Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Solvothermal Synthesis of Nickel Oxide Nanoparticles Decorated Graphene Sheets for Electrochemical Detection of Glucose
Corresponding Author(s) : Chunyan Wang
Asian Journal of Chemistry,
Vol. 27 No. 2 (2015): Vol 27 Issue 2
Abstract
In this study, we proposed a facial solvothermal approach to the in situ decoration of nickel oxide nanoparticles on the surface of solvothermal reduced graphene (NiO@SRG). The high dispersion of NiO nanoparticles with the uniform size distribution could be easily obtained via using simple solvothermal process. Moreover, the as-prepared NiO@SRG modified glassy carbon electrode (GCE) exhibited better non-enzymatic electrocatalytic responses towards glucose detection and the limit of detection is 1.15 μM (S/N = 3) in alkaline media. In addition, this electrode material possessed some important advantages such as low cost, easy preparation, good stability and high reproducibility. The influence of some interfering species was investigated and the result indicated that these foreign substances did not interfere significantly on the detection of glucose. This new findings demonstrate that NiO@SRG is a promising candidate of advanced electrode material in electrochemical sensing and other electrocatalytic applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); doi:10.1126/science.1102896.
- A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); doi:10.1038/nmat1849.
- C. Lee, X.D. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); doi:10.1126/science.1157996.
- H. Chen, M.B. Muller, K.J. Gilmore, G.G. Wallace and D. Li, Adv. Mater., 20, 3557 (2008); doi:10.1002/adma.200800757.
- M. Segal, Nat. Nanotechnol., 4, 612 (2009); doi:10.1038/nnano.2009.279.
- C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu and B.Z. Jang, Nano Lett., 10, 4863 (2010); doi:10.1021/nl102661q.
- J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead and P.L. McEuen, Science, 315, 490 (2007); doi:10.1126/science.1136836.
- F.N. Xi, D.J. Zhao, X.W. Wang and P. Chen, Electrochem. Commun., 26, 81 (2013); doi:10.1016/j.elecom.2012.10.017.
- J.R. Potts, D.R. Dreyer, C.W. Bielawski and R.S. Ruoff, Polymer, 52, 5 (2011); doi:10.1016/j.polymer.2010.11.042.
- X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, Science, 319, 1229 (2008); doi:10.1126/science.1150878.
- H. Liu, J. Huang, X. Li, J. Liu, Y. Zhang and K. Du, Appl. Surf. Sci., 258, 4917 (2012); doi:10.1016/j.apsusc.2012.01.119.
- Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin and Y. Chen, Appl. Phys. Lett., 92, 223303 (2008); doi:10.1063/1.2938865.
- V. Chandra, J. Park, Y. Chun, J.W. Lee, I. Hwang and K.S. Kim, ACS Nano, 4, 3979 (2010); doi:10.1021/nn1008897.
- X. Huang, X. Qi, F. Boey and H. Zhang, Chem. Soc. Rev., 41, 666 (2012); doi:10.1039/c1cs15078b.
- C. Leger and P. Bertrand, Chem. Rev., 108, 2379 (2008); doi:10.1021/cr0680742.
- O. Yehezkeli, R. Tel-Vered, S. Raichlin and I. Willner, ACS Nano, 5, 2385 (2011); doi:10.1021/nn200313t.
- H. Uehara, M. Kakiage, M. Sekiya, D. Sakuma, T. Yamonobe, N. Takano, A. Barraud, E. Meurville and P. Ryser, ACS Nano, 3, 924 (2009); doi:10.1021/nn8008728.
- T.M. Cheng, T.K. Huang, H.K. Lin, S.P. Tung, Y.L. Chen, C.Y. Lee and H.T. Chiu, ACS Appl. Mater. Interfaces, 2, 2773 (2010); doi:10.1021/am100432a.
- B. Fang, A.X. Gu, G.F. Wang, W. Wang, Y.H. Feng, C.H. Zhang and X.J. Zhang, ACS Appl. Mater. Interfaces, 1, 2829 (2009); doi:10.1021/am900576z.
- B.K. Jena and C.R. Raj, Chem. Eur. J., 12, 2702 (2006); doi:10.1002/chem.200501051.
- Y.Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay and Y.H. Lin, Electroanalysis, 22, 1027 (2010); doi:10.1002/elan.200900571.
- H.C. Gao, F. Xiao, C.B. Ching and H.W. Duan, ACS Appl. Mater. Interfaces, 3, 3049 (2011); doi:10.1021/am200563f.
- Y. Qian, F.C. Ye and J.P. Xu, Int. J. Electrochem. Sci., 7, 10063 (2012).
- X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang and P. Chen, ACS Nano, 6, 3206 (2012); doi:10.1021/nn300097q.
- S. Berchmans, H. Gomathi and G.P. Rao, J. Electroanal. Chem., 394, 267 (1995); doi:10.1016/0022-0728(95)04099-A.
- Y.Q. Zhang, Y.Z. Wang, J.B. Jia and J.G. Wang, Sens. Actuators B, 171-172, 580 (2012); doi:10.1016/j.snb.2012.05.037.
- Y. Jiang, D.D. Chen, J.S. Song, Z. Jiao, Q.L. Ma, H.J. Zhang, L.L. Cheng, B. Zhao and Y.L. Chu, Electrochim. Acta, 91, 173 (2013); doi:10.1016/j.electacta.2012.12.032.
- S.G. Hwang, G.O. Kim, S.R. Yun and K.S. Ryu, Electrochim. Acta, 78, 406 (2012); doi:10.1016/j.electacta.2012.06.031.
- N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva and A.D. Gorchinskiy, Chem. Mater., 11, 771 (1999); doi:10.1021/cm981085u.
- Y. Qian, C.Y. Wang and Z.-G. Le, Appl. Surf. Sci., 257, 10758 (2011); doi:10.1016/j.apsusc.2011.07.093.
- H.-K. Jeong, Y.P. Lee, R.J.W.E. Lahaye, M.-H. Park, K.H. An, I.J. Kim, C.-W. Yang, C.Y. Park, R.S. Ruoff and Y.H. Lee, J. Am. Chem. Soc., 130, 1362 (2008); doi:10.1021/ja076473o.
- C.Y. Wang, D. Li, C.O. Too and G.G. Wallace, Chem. Mater., 21, 2604 (2009); doi:10.1021/cm900764n.
- J.J. Niu and J.N. Wang, Electrochim. Acta, 53, 8058 (2008); doi:10.1016/j.electacta.2008.06.026.
- Y.C. Xing, J. Phys. Chem. B, 108, 19255 (2004); doi:10.1021/jp046697i.
- D. Li and R.B. Kaner, Science, 320, 1170 (2008); doi:10.1126/science.1158180.
- A. Safavi, N. Maleki and E. Farjami, Biosens. Bioelectron., 24, 1655 (2009); doi:10.1016/j.bios.2008.08.040.
- B. Liu, R. Hu and J. Deng, Anal. Chem., 69, 2343 (1997); doi:10.1021/ac960930u.
References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); doi:10.1126/science.1102896.
A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); doi:10.1038/nmat1849.
C. Lee, X.D. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); doi:10.1126/science.1157996.
H. Chen, M.B. Muller, K.J. Gilmore, G.G. Wallace and D. Li, Adv. Mater., 20, 3557 (2008); doi:10.1002/adma.200800757.
M. Segal, Nat. Nanotechnol., 4, 612 (2009); doi:10.1038/nnano.2009.279.
C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu and B.Z. Jang, Nano Lett., 10, 4863 (2010); doi:10.1021/nl102661q.
J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead and P.L. McEuen, Science, 315, 490 (2007); doi:10.1126/science.1136836.
F.N. Xi, D.J. Zhao, X.W. Wang and P. Chen, Electrochem. Commun., 26, 81 (2013); doi:10.1016/j.elecom.2012.10.017.
J.R. Potts, D.R. Dreyer, C.W. Bielawski and R.S. Ruoff, Polymer, 52, 5 (2011); doi:10.1016/j.polymer.2010.11.042.
X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, Science, 319, 1229 (2008); doi:10.1126/science.1150878.
H. Liu, J. Huang, X. Li, J. Liu, Y. Zhang and K. Du, Appl. Surf. Sci., 258, 4917 (2012); doi:10.1016/j.apsusc.2012.01.119.
Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin and Y. Chen, Appl. Phys. Lett., 92, 223303 (2008); doi:10.1063/1.2938865.
V. Chandra, J. Park, Y. Chun, J.W. Lee, I. Hwang and K.S. Kim, ACS Nano, 4, 3979 (2010); doi:10.1021/nn1008897.
X. Huang, X. Qi, F. Boey and H. Zhang, Chem. Soc. Rev., 41, 666 (2012); doi:10.1039/c1cs15078b.
C. Leger and P. Bertrand, Chem. Rev., 108, 2379 (2008); doi:10.1021/cr0680742.
O. Yehezkeli, R. Tel-Vered, S. Raichlin and I. Willner, ACS Nano, 5, 2385 (2011); doi:10.1021/nn200313t.
H. Uehara, M. Kakiage, M. Sekiya, D. Sakuma, T. Yamonobe, N. Takano, A. Barraud, E. Meurville and P. Ryser, ACS Nano, 3, 924 (2009); doi:10.1021/nn8008728.
T.M. Cheng, T.K. Huang, H.K. Lin, S.P. Tung, Y.L. Chen, C.Y. Lee and H.T. Chiu, ACS Appl. Mater. Interfaces, 2, 2773 (2010); doi:10.1021/am100432a.
B. Fang, A.X. Gu, G.F. Wang, W. Wang, Y.H. Feng, C.H. Zhang and X.J. Zhang, ACS Appl. Mater. Interfaces, 1, 2829 (2009); doi:10.1021/am900576z.
B.K. Jena and C.R. Raj, Chem. Eur. J., 12, 2702 (2006); doi:10.1002/chem.200501051.
Y.Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay and Y.H. Lin, Electroanalysis, 22, 1027 (2010); doi:10.1002/elan.200900571.
H.C. Gao, F. Xiao, C.B. Ching and H.W. Duan, ACS Appl. Mater. Interfaces, 3, 3049 (2011); doi:10.1021/am200563f.
Y. Qian, F.C. Ye and J.P. Xu, Int. J. Electrochem. Sci., 7, 10063 (2012).
X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang and P. Chen, ACS Nano, 6, 3206 (2012); doi:10.1021/nn300097q.
S. Berchmans, H. Gomathi and G.P. Rao, J. Electroanal. Chem., 394, 267 (1995); doi:10.1016/0022-0728(95)04099-A.
Y.Q. Zhang, Y.Z. Wang, J.B. Jia and J.G. Wang, Sens. Actuators B, 171-172, 580 (2012); doi:10.1016/j.snb.2012.05.037.
Y. Jiang, D.D. Chen, J.S. Song, Z. Jiao, Q.L. Ma, H.J. Zhang, L.L. Cheng, B. Zhao and Y.L. Chu, Electrochim. Acta, 91, 173 (2013); doi:10.1016/j.electacta.2012.12.032.
S.G. Hwang, G.O. Kim, S.R. Yun and K.S. Ryu, Electrochim. Acta, 78, 406 (2012); doi:10.1016/j.electacta.2012.06.031.
N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva and A.D. Gorchinskiy, Chem. Mater., 11, 771 (1999); doi:10.1021/cm981085u.
Y. Qian, C.Y. Wang and Z.-G. Le, Appl. Surf. Sci., 257, 10758 (2011); doi:10.1016/j.apsusc.2011.07.093.
H.-K. Jeong, Y.P. Lee, R.J.W.E. Lahaye, M.-H. Park, K.H. An, I.J. Kim, C.-W. Yang, C.Y. Park, R.S. Ruoff and Y.H. Lee, J. Am. Chem. Soc., 130, 1362 (2008); doi:10.1021/ja076473o.
C.Y. Wang, D. Li, C.O. Too and G.G. Wallace, Chem. Mater., 21, 2604 (2009); doi:10.1021/cm900764n.
J.J. Niu and J.N. Wang, Electrochim. Acta, 53, 8058 (2008); doi:10.1016/j.electacta.2008.06.026.
Y.C. Xing, J. Phys. Chem. B, 108, 19255 (2004); doi:10.1021/jp046697i.
D. Li and R.B. Kaner, Science, 320, 1170 (2008); doi:10.1126/science.1158180.
A. Safavi, N. Maleki and E. Farjami, Biosens. Bioelectron., 24, 1655 (2009); doi:10.1016/j.bios.2008.08.040.
B. Liu, R. Hu and J. Deng, Anal. Chem., 69, 2343 (1997); doi:10.1021/ac960930u.