Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Conductance and Thermodynamics Study of Interaction of Some Transition Metals with Mixed Oxygen-Nitrogen Donors Macrocycles in Acetonitrile solution
Corresponding Author(s) : Samer M. Hamzeh
Asian Journal of Chemistry,
Vol. 27 No. 2 (2015): Vol 27 Issue 2
Abstract
The thermodynamic stabilities of the transition metals Mn2+, Co2+, Ni2+ and Cu2+, with the mixed oxygen-nitrogen donor macrocycles, 1,7-diaza-12-crown-4 and 1,10-diaza-18-crown-6, have been determined conductometrically in acetonitrile solution at various temperatures (283, 293, 303 and 313 K). The formation constants, Kf, of the resulting 1:1 complexes were determined from the molar conductance-mole ratio data by using a non-linear least square fitting procedure. The perchlorate salts of these metal ions show a gradual decrease in the molar conductance with addition of the ligand. The binding sequence based on the value of ln Kf at 298 K, as derived from this study is Co2+ > Mn2+ > Cu2+ > Ni2+ for 1,7-Diaza-12-crown-4 for interaction pattern, and Co2+ > Ni2+ > Cu2+ > Mn2+ for 1,10-diaza-18-crown-6 interaction. The solvation and the conformational change of the ligands influence the relative stabilities of the complexes. The thermodynamic parameters DHo and DSo of these interactions were determined from the temperature dependence of the formation constants.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.J. Pedersen, J. Am. Chem. Soc., 89, 7017 (1967); doi:10.1021/ja01002a035.
- M. Payehghadr and R. Heidari, J. Incl. Phenom. Macrocycl. Chem., 75, 205 (2013); doi:10.1007/s10847-012-0162-4.
- M. Valente, S.F. Sousa, A.L. Magalhães and C. Freire, J. Mol. Model., 17, 3275 (2011); doi:10.1007/s00894-011-1004-9.
- H.J. Buschmann, R.C. Mutihac and E. Schollmeyer, J. Solution Chem., 38, 209 (2009); doi:10.1007/s10953-008-9358-z.
- R.M. Izatt, J.S. Bradshaw, S.A. Nielsen, J.D. Lamb, J.J. Christensen and D. Sen, Chem. Rev., 85, 271 (1985); doi:10.1021/cr00068a003.
- R.D. Hancock, J. Chem. Educ., 69, 615 (1992); doi:10.1021/ed069p615.
- R.D. Hancock and A.E. Martell, Chem. Rev., 89, 1875 (1989); doi:10.1021/cr00098a011.
- R.M. Izatt, K. Pawlak, J.S. Bradshaw and R.L. Bruening, Chem. Rev., 95, 2529 (1995); doi:10.1021/cr00039a010.
- V.P. Solov’ev, N.N. Strakhova, O.A. Raevsky, V. Rüdiger and H.J. Schneider, J. Org. Chem., 61, 5221 (1996); doi:10.1021/jo952250h.
- J.D. Lamb, R.M. Izatt, C.S. Swain and J.J. Christensen, J. Am. Chem. Soc., 102, 475 (1980); doi:10.1021/ja00522a005.
- J.M. Caridade Costa and P.M.S. Rodrigues, Electrochim. Acta, 20, 167 (2002); doi:10.4152/pea.200204167.
- Rounaghi, A. Soleamani and K.R. Sanavi, J. Incl. Phenom. Macrocycl. Chem., 58, 43 (2007); doi:10.1007/s10847-005-9035-4.
- M. Shamsipur and G. Khayatian, J. Incl. Phenom. Macrocycl. Chem., 39, 109 (2001); doi:10.1023/A:1008144802638.
- J.M. Lehn, Struct. Bonding, 16, 1 (1973); doi:10.1007/BFb0004364.
- G. Anderegg, Helv. Chim. Acta, 58, 1218 (1975); doi:10.1002/hlca.19750580427.
- G. Anderegg, A. Ekstrom, L.F. Lindoy and R.J. Smith, J. Am. Chem. Soc., 102, 2670 (1980); doi:10.1021/ja00528a025.
- L.F. Lindoy, H.C. Lip, J.H. Rea, R.J. Smith, K. Henrick, M. McPartlin and P.A. Tasker, Inorg. Chem., 19, 3360 (1980); doi:10.1021/ic50213a030.
- D.A. Gustowski, V.J. Gatto, J. Mallen, L. Echegoyen and G.W. Gokel, J. Org. Chem., 52, 5172 (1987); doi:10.1021/jo00232a021.
- A. Ekstrom, L.F. Lindoy and R.J. Smith, Inorg. Chem., 19, 724 (1980); doi:10.1021/ic50205a028.
- K.R. Adam, L.F. Lindoy, B.W. Skelton, S.V. Smith and A.H. White, J. Chem. Soc., Dalton Trans., 3361 (1994); doi:10.1039/dt9940003361.
- Y. Wu and W. Koch, J. Solution Chem., 20, 391 (1991); doi:10.1007/BF00650765.
- J.A. Nelder and R. Mead, Comput. J., 7, 308 (1965); doi:10.1093/comjnl/7.4.308.
- G.W. Gokel, D.M. Goli, C. Minganti and L. Echegoyen, J. Am. Chem. Soc., 105, 6786 (1983); doi:10.1021/ja00361a003.
- E. Luboch, A. Cygan and J.F. Biernat, Inorg. Chim. Acta, 68, 201 (1983); doi:10.1016/S0020-1693(00)88961-6.
- F. Arnaud-Neu, B. Spiess and M.J. Schwing-Weill, Helv. Chim. Acta, 60, 2633 (1977); doi:10.1002/hlca.19770600815.
- G. Anderegg, Helv. Chim. Acta, 64, 1790 (1981); doi:10.1002/hlca.19810640608.
- F. Arnaud-Neu, B. Spiess and M.J. Schwing-Weill, J. Am. Chem. Soc., 104, 5641 (1982); doi:10.1021/ja00385a014.
- K.M. Tawarah and S.A. Mizyed, J. Solution Chem., 18, 387 (1989); doi:10.1007/BF00656776.
References
C.J. Pedersen, J. Am. Chem. Soc., 89, 7017 (1967); doi:10.1021/ja01002a035.
M. Payehghadr and R. Heidari, J. Incl. Phenom. Macrocycl. Chem., 75, 205 (2013); doi:10.1007/s10847-012-0162-4.
M. Valente, S.F. Sousa, A.L. Magalhães and C. Freire, J. Mol. Model., 17, 3275 (2011); doi:10.1007/s00894-011-1004-9.
H.J. Buschmann, R.C. Mutihac and E. Schollmeyer, J. Solution Chem., 38, 209 (2009); doi:10.1007/s10953-008-9358-z.
R.M. Izatt, J.S. Bradshaw, S.A. Nielsen, J.D. Lamb, J.J. Christensen and D. Sen, Chem. Rev., 85, 271 (1985); doi:10.1021/cr00068a003.
R.D. Hancock, J. Chem. Educ., 69, 615 (1992); doi:10.1021/ed069p615.
R.D. Hancock and A.E. Martell, Chem. Rev., 89, 1875 (1989); doi:10.1021/cr00098a011.
R.M. Izatt, K. Pawlak, J.S. Bradshaw and R.L. Bruening, Chem. Rev., 95, 2529 (1995); doi:10.1021/cr00039a010.
V.P. Solov’ev, N.N. Strakhova, O.A. Raevsky, V. Rüdiger and H.J. Schneider, J. Org. Chem., 61, 5221 (1996); doi:10.1021/jo952250h.
J.D. Lamb, R.M. Izatt, C.S. Swain and J.J. Christensen, J. Am. Chem. Soc., 102, 475 (1980); doi:10.1021/ja00522a005.
J.M. Caridade Costa and P.M.S. Rodrigues, Electrochim. Acta, 20, 167 (2002); doi:10.4152/pea.200204167.
Rounaghi, A. Soleamani and K.R. Sanavi, J. Incl. Phenom. Macrocycl. Chem., 58, 43 (2007); doi:10.1007/s10847-005-9035-4.
M. Shamsipur and G. Khayatian, J. Incl. Phenom. Macrocycl. Chem., 39, 109 (2001); doi:10.1023/A:1008144802638.
J.M. Lehn, Struct. Bonding, 16, 1 (1973); doi:10.1007/BFb0004364.
G. Anderegg, Helv. Chim. Acta, 58, 1218 (1975); doi:10.1002/hlca.19750580427.
G. Anderegg, A. Ekstrom, L.F. Lindoy and R.J. Smith, J. Am. Chem. Soc., 102, 2670 (1980); doi:10.1021/ja00528a025.
L.F. Lindoy, H.C. Lip, J.H. Rea, R.J. Smith, K. Henrick, M. McPartlin and P.A. Tasker, Inorg. Chem., 19, 3360 (1980); doi:10.1021/ic50213a030.
D.A. Gustowski, V.J. Gatto, J. Mallen, L. Echegoyen and G.W. Gokel, J. Org. Chem., 52, 5172 (1987); doi:10.1021/jo00232a021.
A. Ekstrom, L.F. Lindoy and R.J. Smith, Inorg. Chem., 19, 724 (1980); doi:10.1021/ic50205a028.
K.R. Adam, L.F. Lindoy, B.W. Skelton, S.V. Smith and A.H. White, J. Chem. Soc., Dalton Trans., 3361 (1994); doi:10.1039/dt9940003361.
Y. Wu and W. Koch, J. Solution Chem., 20, 391 (1991); doi:10.1007/BF00650765.
J.A. Nelder and R. Mead, Comput. J., 7, 308 (1965); doi:10.1093/comjnl/7.4.308.
G.W. Gokel, D.M. Goli, C. Minganti and L. Echegoyen, J. Am. Chem. Soc., 105, 6786 (1983); doi:10.1021/ja00361a003.
E. Luboch, A. Cygan and J.F. Biernat, Inorg. Chim. Acta, 68, 201 (1983); doi:10.1016/S0020-1693(00)88961-6.
F. Arnaud-Neu, B. Spiess and M.J. Schwing-Weill, Helv. Chim. Acta, 60, 2633 (1977); doi:10.1002/hlca.19770600815.
G. Anderegg, Helv. Chim. Acta, 64, 1790 (1981); doi:10.1002/hlca.19810640608.
F. Arnaud-Neu, B. Spiess and M.J. Schwing-Weill, J. Am. Chem. Soc., 104, 5641 (1982); doi:10.1021/ja00385a014.
K.M. Tawarah and S.A. Mizyed, J. Solution Chem., 18, 387 (1989); doi:10.1007/BF00656776.