Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Characterization of ZnO Nanoparticles and Their Effects on Bombina orientalis
Corresponding Author(s) : Weon Bae Ko
Asian Journal of Chemistry,
Vol. 27 No. 2 (2015): Vol 27 Issue 2
Abstract
Nanosized zinc oxide was synthesized from zinc nitrate hexahydrate and sodium hydroxide in an aqueous-alcoholic solution under ultrasonic irradiation at room temperature. The crystallinity, size, morphology and optical property of ZnO nanoparticles were examined by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and UV-visible spectrophotometry. Bombina orientalis were breeded in the laboratory at room temperature and exposed to ZnO nanoparticles at various concentrations. After hatching the tadpoles, the development, mortality and malformation of Bombina orientalis were investigated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Siraj, K. Javaid, J.D. Pedarnig, M.A. Bodea and S. Naseem, J. Alloys Comp., 563, 280 (2013); doi:10.1016/j.jallcom.2013.02.040.
- A.K. Srivastava, Mater. Lett., 62, 4296 (2008); doi:10.1016/j.matlet.2008.07.009.
- A.S. Lanje, S.J. Sharma, R.S. Ningthoujam, J.-S. Ahn and R.B. Pode, Adv. Powder Technol., 24, 331 (2013); doi:10.1016/j.apt.2012.08.005.
- V.R. Shinde, T.P. Gujar, C.D. Lokhande, R.S. Mane and S.-H. Han, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 137, 119 (2007); doi:10.1016/j.mseb.2006.11.008.
- V.R. Shinde, T.P. Gujar and C.D. Lokhande, Sol. Energy Mater. Sol. Cells, 91, 1055 (2007); doi:10.1016/j.solmat.2007.02.017.
- Y. Li, J. Gong and Y. Deng, Sens. Actuators A, 158, 176 (2010); doi:10.1016/j.sna.2009.12.030.
- Z.L. Wang and J. Song, Science, 312, 242 (2006); doi:10.1126/science.1124005.
- D. Ali, S. Alarifi, S. Kumar, M. Ahamed and M.A. Siddiqui, Aquat. Toxicol., 124-125, 83 (2012); doi:10.1016/j.aquatox.2012.07.012.
- A. Nel, T. Xia, L. Mädler and N. Li, Science, 311, 622 (2006); doi:10.1126/science.1114397.
- B. Nowack and T.D. Bucheli, Environ. Pollut., 150, 5 (2007); doi:10.1016/j.envpol.2007.06.006.
- F. Gottschalk, T. Sonderer, R.W. Scholz and B. Nowack, Environ. Sci. Technol., 43, 9216 (2009); doi:10.1021/es9015553.
- C.G. Daughton and T.A. Ternes, Environ. Health Perspect., 107, 907 (1999); doi:10.1289/ehp.99107s6907.
- N.M. Franklin, N.J. Rogers, S.C. Apte, G.E. Batley, G.E. Gadd and P.S. Casey, Environ. Sci. Technol., 41, 8484 (2007); doi:10.1021/es071445r.
- S.B. Lovern, J.R. Strickler and R. Klaper, Environ. Sci. Technol., 41, 4465 (2007); doi:10.1021/es062146p.
- S.B. Lovern and R. Klaper, Environ. Toxicol. Chem., 25, 1132 (2006); doi:10.1897/05-278R.1.
- X. Zhu, L. Zhu, Z. Duan, R. Qi, Y. Li and Y. Lang, J. Environ. Sci. Health Part A, 43, 278 (2008); doi:10.1080/10934520701792779.
- S. Nations, M. Long, M. Wages, J. Canas, J.D. Maul, C. Theodorakis and G.P. Cobb, Ecotoxicol. Environ. Saf., 74, 203 (2011); doi:10.1016/j.ecoenv.2010.07.018.
- L. Wang and M. Muhammed, J. Mater. Chem., 9, 2871 (1999); doi:10.1039/a907098b.
- N.S. Pesika, K.J. Stebe and P.C. Searson, J. Phys. Chem. B, 107, 10412 (2003); doi:10.1021/jp0303218.
- S.K. Hong, J.H. Lee, J.M. Kim, M.H. Kwon and W.B. Ko, J. Nanosci. Nanotechnol., 11, 593 (2011); doi:10.1166/jnn.2011.3213.
- Y. Zhang, B. Lin, Z. Fu, C. Liu and W. Han, Opt. Mater., 28, 1192 (2006); doi:10.1016/j.optmat.2005.08.016.
- M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier and A. Kahru, Chemosphere, 71, 1308 (2008); doi:10.1016/j.chemosphere.2007.11.047.
References
K. Siraj, K. Javaid, J.D. Pedarnig, M.A. Bodea and S. Naseem, J. Alloys Comp., 563, 280 (2013); doi:10.1016/j.jallcom.2013.02.040.
A.K. Srivastava, Mater. Lett., 62, 4296 (2008); doi:10.1016/j.matlet.2008.07.009.
A.S. Lanje, S.J. Sharma, R.S. Ningthoujam, J.-S. Ahn and R.B. Pode, Adv. Powder Technol., 24, 331 (2013); doi:10.1016/j.apt.2012.08.005.
V.R. Shinde, T.P. Gujar, C.D. Lokhande, R.S. Mane and S.-H. Han, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 137, 119 (2007); doi:10.1016/j.mseb.2006.11.008.
V.R. Shinde, T.P. Gujar and C.D. Lokhande, Sol. Energy Mater. Sol. Cells, 91, 1055 (2007); doi:10.1016/j.solmat.2007.02.017.
Y. Li, J. Gong and Y. Deng, Sens. Actuators A, 158, 176 (2010); doi:10.1016/j.sna.2009.12.030.
Z.L. Wang and J. Song, Science, 312, 242 (2006); doi:10.1126/science.1124005.
D. Ali, S. Alarifi, S. Kumar, M. Ahamed and M.A. Siddiqui, Aquat. Toxicol., 124-125, 83 (2012); doi:10.1016/j.aquatox.2012.07.012.
A. Nel, T. Xia, L. Mädler and N. Li, Science, 311, 622 (2006); doi:10.1126/science.1114397.
B. Nowack and T.D. Bucheli, Environ. Pollut., 150, 5 (2007); doi:10.1016/j.envpol.2007.06.006.
F. Gottschalk, T. Sonderer, R.W. Scholz and B. Nowack, Environ. Sci. Technol., 43, 9216 (2009); doi:10.1021/es9015553.
C.G. Daughton and T.A. Ternes, Environ. Health Perspect., 107, 907 (1999); doi:10.1289/ehp.99107s6907.
N.M. Franklin, N.J. Rogers, S.C. Apte, G.E. Batley, G.E. Gadd and P.S. Casey, Environ. Sci. Technol., 41, 8484 (2007); doi:10.1021/es071445r.
S.B. Lovern, J.R. Strickler and R. Klaper, Environ. Sci. Technol., 41, 4465 (2007); doi:10.1021/es062146p.
S.B. Lovern and R. Klaper, Environ. Toxicol. Chem., 25, 1132 (2006); doi:10.1897/05-278R.1.
X. Zhu, L. Zhu, Z. Duan, R. Qi, Y. Li and Y. Lang, J. Environ. Sci. Health Part A, 43, 278 (2008); doi:10.1080/10934520701792779.
S. Nations, M. Long, M. Wages, J. Canas, J.D. Maul, C. Theodorakis and G.P. Cobb, Ecotoxicol. Environ. Saf., 74, 203 (2011); doi:10.1016/j.ecoenv.2010.07.018.
L. Wang and M. Muhammed, J. Mater. Chem., 9, 2871 (1999); doi:10.1039/a907098b.
N.S. Pesika, K.J. Stebe and P.C. Searson, J. Phys. Chem. B, 107, 10412 (2003); doi:10.1021/jp0303218.
S.K. Hong, J.H. Lee, J.M. Kim, M.H. Kwon and W.B. Ko, J. Nanosci. Nanotechnol., 11, 593 (2011); doi:10.1166/jnn.2011.3213.
Y. Zhang, B. Lin, Z. Fu, C. Liu and W. Han, Opt. Mater., 28, 1192 (2006); doi:10.1016/j.optmat.2005.08.016.
M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier and A. Kahru, Chemosphere, 71, 1308 (2008); doi:10.1016/j.chemosphere.2007.11.047.