Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Analysis of Acid Organic Compounds in Soil by Complexation Coupled with in situ Derivatization
Corresponding Author(s) : Yongtao Zhang
Asian Journal of Chemistry,
Vol. 27 No. 2 (2015): Vol 27 Issue 2
Abstract
A method that in situ derivatization and extraction of acidic organic compounds in soil was developed with Na4-EDTA as complexing agent and 2,3,4,5,6-pentafluoro-benzyl bromide as derivatization agent. Derivatization products were sensitively determined by gas chromatography-negative chemical ionization mass spectrometry. Acidic organic compounds reacted with Na4-EDTA (carbonyl group) to form a complex compound, so that the polarity was reduced. On complexation, drivatization and extraction of acidic organic compounds in 4 g soil were performed in 4 mL acetone by the use of ultrasonic technique. Derivatization and reverse reaction of complexation reinforced each other. It was more effectively under action of ultrasonic, so a single extraction within 40 min could get preferable recovery. Soil matrix would not affect complexation and in situ derivatization when total organic carbon content was lower than 3 %. In the optimal conditions, the calibration curves showed good linearity in a wide range of 5-200 μg/kg with correlation coefficients higher than 0.99. The detection limits (S/N = 3) were less than 1 μg/kg. The spiked recoveries of different concentrations ranged from 75 to 107 % with relative standard deviations of 8-13 %. This method was suitable for acid organic compounds detection in soil, solid and plant samples.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.J. King, ed: R.W. Rowseau, Handbook of Separation Process Technology, John Wiley & Sons, New York, pp. 760-774 (1987).
- L.A. Tung and C.J. King, Ind. Eng. Chem. Res., 33, 3217 (1994); doi:10.1021/ie00036a041.
- Y.Y. Yang, J.H. Guo and Y.Y. Dai, CIESC J., 48, 706 (1997).
- Y.Y. Huang, J. Zhang and Y.Y. Dai, Chinese Environ. Chem., 18, 136 (2000).
- U.S. EPA Method 8151A, National Technical Information Service, Washington, DC (1997).
- J.Y. Gui, L. Zang, J.X. Qi, Y.T. Zang, H.Y. Zuo, X.Y. Li and L. Zhang, Chinese J. Anal. Chem., 38, 1177 (2010).
- J. Chen and J. Pawliszyn, Anal. Chem., 67, 2530 (1995); doi:10.1021/ac00111a006.
- M.D. David, S. Campbell and Q.X. Li, Anal. Chem., 72, 3665 (2000); doi:10.1021/ac000164y.
- M.D. Esclapez, J.V. Garcia-Perez, A. Mulet and J.A. Cárcel, Food Eng. Rev., 3, 108 (2011); doi:10.1007/s12393-011-9036-6.
- J.C. Shen and X.G. Shao, Anal. Bioanal. Chem., 383, 1003 (2005); doi:10.1007/s00216-005-0078-6.
- P. Tolgyessy, B. Vrana and K. Silharova, Chromatographia, 76, 177 (2013); doi:10.1007/s10337-012-2364-8.
- U.S.E.P.A. Method, 3550B, Ultrasonic Extraction, Washington, DC (1997).
References
C.J. King, ed: R.W. Rowseau, Handbook of Separation Process Technology, John Wiley & Sons, New York, pp. 760-774 (1987).
L.A. Tung and C.J. King, Ind. Eng. Chem. Res., 33, 3217 (1994); doi:10.1021/ie00036a041.
Y.Y. Yang, J.H. Guo and Y.Y. Dai, CIESC J., 48, 706 (1997).
Y.Y. Huang, J. Zhang and Y.Y. Dai, Chinese Environ. Chem., 18, 136 (2000).
U.S. EPA Method 8151A, National Technical Information Service, Washington, DC (1997).
J.Y. Gui, L. Zang, J.X. Qi, Y.T. Zang, H.Y. Zuo, X.Y. Li and L. Zhang, Chinese J. Anal. Chem., 38, 1177 (2010).
J. Chen and J. Pawliszyn, Anal. Chem., 67, 2530 (1995); doi:10.1021/ac00111a006.
M.D. David, S. Campbell and Q.X. Li, Anal. Chem., 72, 3665 (2000); doi:10.1021/ac000164y.
M.D. Esclapez, J.V. Garcia-Perez, A. Mulet and J.A. Cárcel, Food Eng. Rev., 3, 108 (2011); doi:10.1007/s12393-011-9036-6.
J.C. Shen and X.G. Shao, Anal. Bioanal. Chem., 383, 1003 (2005); doi:10.1007/s00216-005-0078-6.
P. Tolgyessy, B. Vrana and K. Silharova, Chromatographia, 76, 177 (2013); doi:10.1007/s10337-012-2364-8.
U.S.E.P.A. Method, 3550B, Ultrasonic Extraction, Washington, DC (1997).