Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation of Boric-10 Acid Applied in Shielded Materials of Nuclear Industry
Corresponding Author(s) : Jiao Xu
Asian Journal of Chemistry,
Vol. 27 No. 1 (2015): Vol 27 Issue 1
Abstract
Because of the superior features of boron-10 isotope in absorbing hot neutrons, boric-10 acid (H3 10BO3) has been used widely in nuclear industry, like as additive in primary loop of pressurized water reactor and as control rod and other shielded materials in nuclear reactor. Boric-10 acid is obtained from boron-10 trifluoride (10BF3) by esterification and hydrolyzation. In this study, the preparation of trimethyl borate-10 [(CH3O)3B] from boron-10 trifluoride (10BF3) obtained through chemical exchange rectification was investigated. The kinetics of esterification reaction was controlled by second order pseudo homogeneous reaction. The activation energy was 685.5 KJ/mol. In addition, the hydrolyzation of trimethyl borate-10 was investigated as a function of pH, temperature and molar ratio of water to trimethyl borate-10. Under optimum process conditions, higher yield of boric-10 acid with nuclear industrial purity grade was realized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Lin, W. Zhang and L. Wang, J. Phys. Chem. A, 113, 7267 (2009); doi:10.1021/jp810328r.
- S.P. Potapov, The Soviet J. Atomic Energy, 10, 234 (1962); doi:10.1007/BF01846087.
- I.A. Semiokhin, J. Radioanal. Nucl. Chem., 205, 201 (1996); doi:10.1007/BF02039405.
- G. Yang and Q. Ceng, Atomic Energy Press, 13, 14 (1989).
- W.P. Chen, Inorganic Chemical Technology, Chemical Industry Press, Beijing, pp. 145-147 (2003).
- L. Qiu, Principles of Isotopes Separation, Atomic Energy Publishing House, Beijing, China, pp. 192-199 (1990).
- A.A. Palko, Ind. Eng. Chem., 51, 121 (1959); doi:10.1021/ie50590a029.
- 8 V.A. Ivanov and S.G. Katalnikov, Sep. Sci. Technol., 36, 1737 (2001); doi:10.1081/SS-100104760.
- Q. Wang, Y. Xiao, Y. Wang, C.-G. Zhang and H.-Z. Wei, Chin. J. Chem., 20, 45 (2002); doi:10.1002/cjoc.20020200110.
- A.A. Palko and J.S. Drury, J. Chem. Phys., 40, 278 (1964); doi:10.1063/1.1725109.
- A.L. Conn and J.E. Wolf, Ind. Eng. Chem., 50, 1231 (1958); doi:10.1021/ie50585a024.
References
T. Lin, W. Zhang and L. Wang, J. Phys. Chem. A, 113, 7267 (2009); doi:10.1021/jp810328r.
S.P. Potapov, The Soviet J. Atomic Energy, 10, 234 (1962); doi:10.1007/BF01846087.
I.A. Semiokhin, J. Radioanal. Nucl. Chem., 205, 201 (1996); doi:10.1007/BF02039405.
G. Yang and Q. Ceng, Atomic Energy Press, 13, 14 (1989).
W.P. Chen, Inorganic Chemical Technology, Chemical Industry Press, Beijing, pp. 145-147 (2003).
L. Qiu, Principles of Isotopes Separation, Atomic Energy Publishing House, Beijing, China, pp. 192-199 (1990).
A.A. Palko, Ind. Eng. Chem., 51, 121 (1959); doi:10.1021/ie50590a029.
8 V.A. Ivanov and S.G. Katalnikov, Sep. Sci. Technol., 36, 1737 (2001); doi:10.1081/SS-100104760.
Q. Wang, Y. Xiao, Y. Wang, C.-G. Zhang and H.-Z. Wei, Chin. J. Chem., 20, 45 (2002); doi:10.1002/cjoc.20020200110.
A.A. Palko and J.S. Drury, J. Chem. Phys., 40, 278 (1964); doi:10.1063/1.1725109.
A.L. Conn and J.E. Wolf, Ind. Eng. Chem., 50, 1231 (1958); doi:10.1021/ie50585a024.