Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Density Functional Theory and Time-Dependent Density-Functional Study of Positively Charged Alkali Metal Doped Stone Whale Defective Graphene Complexes
Corresponding Author(s) : Bin Huang
Asian Journal of Chemistry,
Vol. 27 No. 1 (2015): Vol 27 Issue 1
Abstract
The structural and electronic properties of positively charged alkali metal doped graphene and stone whale defective graphene complexes have been examined by means of density functional theory and time-dependent density-functional theories. The geometry optimization showed that Li, Na, K atom prefers to locate above the center of the hexagon ring of graphene and heptagon ring of stone whale graphene, furthermore stone whale graphene sheet occur curved. The calculated binding energies for Li, Na and K of positively charged stone whale graphene, are in the range of 0.776 to 1.104 eV and the adsorption of Na is also the weakest, which is similar to those of graphene systems. From our calculations, it can be expected that the excited and anionic states of graphene are strongly affected by Na doped, however, Na doped positively charged stone whale only causes a slightly change of electronic states of stone whale graphene, the nature of the electronic structure is hardly changed. We believe our calculations are useful to deep understanding available experimental results.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.K. Geim, Science, 324, 1530 (2009); doi:10.1126/science.1158877.
- C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam and A. Govindaraj, Angew. Chem. Int. Ed., 48, 7752 (2009); doi:10.1002/anie.200901678.
- K.R. Ratinac, W. Yang, S.P. Ringer and F. Braet, Environ. Sci. Technol., 44, 1167 (2010); doi:10.1021/es902659d.
- S.S. Yu, W.T. Zheng, Q.B. Wen and Q. Jiang, Carbon, 46, 537 (2008); doi:10.1016/j.carbon.2008.01.006.
- S.S. Yu and W.T. Zheng, Nanoscale, 2, 1069 (2010); doi:10.1039/c0nr00002g.
- Y. Qian, S.B. Lu and F.L. Gao, Mater. Lett., 65, 56 (2011); doi:10.1016/j.matlet.2010.09.042.
- E.H. Song, Z. Wen and Q. Jiang, J. Phys. Chem. C, 115, 3678 (2011); doi:10.1021/jp108978c.
- S. Wannakao, T. Nongnual, P. Khongpracha, T. Maihom and J. Limtrakul, J. Phys. Chem. C, 116, 16992 (2012); doi:10.1021/jp3035192.
- M. Inagaki, H. Tachikawa, T. Nakahashi, H. Konno and Y. Hishiyama, Carbon, 36, 1021 (1998); doi:10.1016/S0008-6223(97)00236-4.
- H. Konno, K. Shiba, H. Tachikawa, T. Nakahashi, H. Oka and M. Inagaki, Synth. Met., 125, 189 (2001); doi:10.1016/S0379-6779(01)00532-X.
- W.Q. Deng, X. Xu and W.A. Goddard, Phys. Rev. Lett., 92, 166103 (2004); doi:10.1103/PhysRevLett.92.166103.
- H. Tachikawa, Y. Nagoya and T. Fukuzumi, J. Power Sources, 195, 6148 (2010); doi:10.1016/j.jpowsour.2010.01.014.
- J.H. Cho and C.R. Park, Catal. Today, 120, 407 (2007); doi:10.1016/j.cattod.2006.09.027.
- L. Chen, Y.M. Zhang, N. Koratkar, P. Jena and S.K. Nayak, Phys. Rev. B, 77, 033405 (2008); doi:10.1103/PhysRevB.77.033405.
- I. Cabria, M.J. Lopez and J.A. Alonso, J. Chem. Phys., 123, 204721 (2005); doi:10.1063/1.2125727.
- L. Qiao, C.Q. Qu, H.Z. Zhang, S.S. Yu, X.Y. Hu, X.M. Zhang, D.M. Bi, Q. Jiang and W.T. Zheng, Diamond Rel. Mater., 19, 1377 (2010); doi:10.1016/j.diamond.2010.08.003.
- D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang and Z. Jiao, Chem. Mater., 21, 3136 (2009); doi:10.1021/cm900395k.
- X. Duan, B. Akdim and R. Pachter,, Appl. Surf. Sci., 243, 11 (2005); doi:10.1016/j.apsusc.2004.05.300.
- A. Marquez, A. Vargas and P.B. Balbuena, J. Electrochem. Soc., 145, 3328 (1998); doi:10.1149/1.1838807.
- H. Tachikawa and A. Shimizu, J. Phys. Chem. B, 110, 20445 (2006); doi:10.1021/jp061603l.
- J. Zheng, Z. Ren, P. Guo, L. Fang and J. Fan, Appl. Surf. Sci., 258, 1651 (2011); doi:10.1016/j.apsusc.2011.09.007.
- A.D. Becke, J. Chem. Phys., 84, 4524 (1986); doi:10.1063/1.450025.
- (a) R.E. Stratmann, G.E. Scuseria and M.J. Frisch, J. Chem. Phys., 109, 8218 (1998); doi:10.1063/1.477483; (b) R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 256, 454 (1996); doi:10.1016/0009-2614(96)00440-X; (c) M.E. Casida, C. Jamorski, K.C. Casida and D.R. Salahub, J. Chem. Phys., 108, 4439 (1998); doi:10.1063/1.475855.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT (2004).
- L.G. Zhou and S.-Q. Shi, Appl. Phys. Lett., 83, 1222 (2003); doi:10.1063/1.1599961.
- Z.H. Zhu and G.Q. Lu, Langmuir, 20, 10751 (2004); doi:10.1021/la040062t.
References
A.K. Geim, Science, 324, 1530 (2009); doi:10.1126/science.1158877.
C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam and A. Govindaraj, Angew. Chem. Int. Ed., 48, 7752 (2009); doi:10.1002/anie.200901678.
K.R. Ratinac, W. Yang, S.P. Ringer and F. Braet, Environ. Sci. Technol., 44, 1167 (2010); doi:10.1021/es902659d.
S.S. Yu, W.T. Zheng, Q.B. Wen and Q. Jiang, Carbon, 46, 537 (2008); doi:10.1016/j.carbon.2008.01.006.
S.S. Yu and W.T. Zheng, Nanoscale, 2, 1069 (2010); doi:10.1039/c0nr00002g.
Y. Qian, S.B. Lu and F.L. Gao, Mater. Lett., 65, 56 (2011); doi:10.1016/j.matlet.2010.09.042.
E.H. Song, Z. Wen and Q. Jiang, J. Phys. Chem. C, 115, 3678 (2011); doi:10.1021/jp108978c.
S. Wannakao, T. Nongnual, P. Khongpracha, T. Maihom and J. Limtrakul, J. Phys. Chem. C, 116, 16992 (2012); doi:10.1021/jp3035192.
M. Inagaki, H. Tachikawa, T. Nakahashi, H. Konno and Y. Hishiyama, Carbon, 36, 1021 (1998); doi:10.1016/S0008-6223(97)00236-4.
H. Konno, K. Shiba, H. Tachikawa, T. Nakahashi, H. Oka and M. Inagaki, Synth. Met., 125, 189 (2001); doi:10.1016/S0379-6779(01)00532-X.
W.Q. Deng, X. Xu and W.A. Goddard, Phys. Rev. Lett., 92, 166103 (2004); doi:10.1103/PhysRevLett.92.166103.
H. Tachikawa, Y. Nagoya and T. Fukuzumi, J. Power Sources, 195, 6148 (2010); doi:10.1016/j.jpowsour.2010.01.014.
J.H. Cho and C.R. Park, Catal. Today, 120, 407 (2007); doi:10.1016/j.cattod.2006.09.027.
L. Chen, Y.M. Zhang, N. Koratkar, P. Jena and S.K. Nayak, Phys. Rev. B, 77, 033405 (2008); doi:10.1103/PhysRevB.77.033405.
I. Cabria, M.J. Lopez and J.A. Alonso, J. Chem. Phys., 123, 204721 (2005); doi:10.1063/1.2125727.
L. Qiao, C.Q. Qu, H.Z. Zhang, S.S. Yu, X.Y. Hu, X.M. Zhang, D.M. Bi, Q. Jiang and W.T. Zheng, Diamond Rel. Mater., 19, 1377 (2010); doi:10.1016/j.diamond.2010.08.003.
D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang and Z. Jiao, Chem. Mater., 21, 3136 (2009); doi:10.1021/cm900395k.
X. Duan, B. Akdim and R. Pachter,, Appl. Surf. Sci., 243, 11 (2005); doi:10.1016/j.apsusc.2004.05.300.
A. Marquez, A. Vargas and P.B. Balbuena, J. Electrochem. Soc., 145, 3328 (1998); doi:10.1149/1.1838807.
H. Tachikawa and A. Shimizu, J. Phys. Chem. B, 110, 20445 (2006); doi:10.1021/jp061603l.
J. Zheng, Z. Ren, P. Guo, L. Fang and J. Fan, Appl. Surf. Sci., 258, 1651 (2011); doi:10.1016/j.apsusc.2011.09.007.
A.D. Becke, J. Chem. Phys., 84, 4524 (1986); doi:10.1063/1.450025.
(a) R.E. Stratmann, G.E. Scuseria and M.J. Frisch, J. Chem. Phys., 109, 8218 (1998); doi:10.1063/1.477483; (b) R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 256, 454 (1996); doi:10.1016/0009-2614(96)00440-X; (c) M.E. Casida, C. Jamorski, K.C. Casida and D.R. Salahub, J. Chem. Phys., 108, 4439 (1998); doi:10.1063/1.475855.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT (2004).
L.G. Zhou and S.-Q. Shi, Appl. Phys. Lett., 83, 1222 (2003); doi:10.1063/1.1599961.
Z.H. Zhu and G.Q. Lu, Langmuir, 20, 10751 (2004); doi:10.1021/la040062t.