Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Decolouration of Metanil Yellow by Combination of Adsorption and Photocatalytic Degradation
Corresponding Author(s) : Wenjie Zhang
Asian Journal of Chemistry,
Vol. 27 No. 1 (2015): Vol 27 Issue 1
Abstract
A combination of adsorption and photocatalytic degradation was explored in decolouration of metanil yellow. When using activated carbon alone, the suspension reaches adsorption-desorption equilibrium after nearly 110 min of stirring. Nearly 57 % of the initial metanil yellow is adsorbed on activated carbon after equilibrium. The addition of more activated carbon can lead to more decolouration of the initial dye. During photocatalytic degradation process, decolouration efficiency increases with extending reaction time. Nearly all the dye can be decolourized after 90 min of photocatalytic degradation. The combination of adsorption and photocatalytic degradation can be more effective on decolouration of metanil yellow. The maximum decolouration efficiency is obtained on the sample containing 1:3 of activated carbon and TiO2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.C. Bansal, J.B. Donnet and H.F. Stoeckli, Active Carbon, Marcel Dekker, New York, pp. 27-118 (1988).
- C. Faur-Brasquet, K. Kadirvelu and P. Le Cloirec, Carbon, 40, 2387 (2002); doi:10.1016/S0008-6223(02)00117-3.
- N. Spahis, A. Addoun, H. Mahmoudi and N. Ghaffour, Desalination, 222, 519 (2008); doi:10.1016/j.desal.2007.02.065.
- C. Moreno-Castilla, M.A. Álvarez-Merino, L.M. Pastrana-Martínez and M.V. López-Ramón, J. Colloid Interf. Sci., 345, 461 (2010); doi:10.1016/j.jcis.2010.01.062.
- M.R. Hoffmann, S.T. Martin, W. Choi and W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
- A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. Chem., 1, 1 (2000); doi:10.1016/S1389-5567(00)00002-2.
- D.H. Quiñones, A. Rey, P.M. Álvarez, F.J. Beltrán and P.K. Plucinski, Appl. Catal. B, 144, 96 (2014); doi:10.1016/j.apcatb.2013.07.005.
- B.F. Gao, P.S. Yap, T.M. Lim and T.T. Lim, Chem. Eng. J., 171, 1098 (2011); doi:10.1016/j.cej.2011.05.006.
- H. Slimen, A. Houas and J.P. Nogier, J. Photochem. Photobiol. A, 221, 13 (2011); doi:10.1016/j.jphotochem.2011.04.013.
- X.J. Wang, Y.F. Liu, Z.H. Hu, Y.J. Chen, W. Liu and G.H. Zhao, J. Hazard. Mater., 169, 1061 (2009); doi:10.1016/j.jhazmat.2009.04.058.
References
R.C. Bansal, J.B. Donnet and H.F. Stoeckli, Active Carbon, Marcel Dekker, New York, pp. 27-118 (1988).
C. Faur-Brasquet, K. Kadirvelu and P. Le Cloirec, Carbon, 40, 2387 (2002); doi:10.1016/S0008-6223(02)00117-3.
N. Spahis, A. Addoun, H. Mahmoudi and N. Ghaffour, Desalination, 222, 519 (2008); doi:10.1016/j.desal.2007.02.065.
C. Moreno-Castilla, M.A. Álvarez-Merino, L.M. Pastrana-Martínez and M.V. López-Ramón, J. Colloid Interf. Sci., 345, 461 (2010); doi:10.1016/j.jcis.2010.01.062.
M.R. Hoffmann, S.T. Martin, W. Choi and W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. Chem., 1, 1 (2000); doi:10.1016/S1389-5567(00)00002-2.
D.H. Quiñones, A. Rey, P.M. Álvarez, F.J. Beltrán and P.K. Plucinski, Appl. Catal. B, 144, 96 (2014); doi:10.1016/j.apcatb.2013.07.005.
B.F. Gao, P.S. Yap, T.M. Lim and T.T. Lim, Chem. Eng. J., 171, 1098 (2011); doi:10.1016/j.cej.2011.05.006.
H. Slimen, A. Houas and J.P. Nogier, J. Photochem. Photobiol. A, 221, 13 (2011); doi:10.1016/j.jphotochem.2011.04.013.
X.J. Wang, Y.F. Liu, Z.H. Hu, Y.J. Chen, W. Liu and G.H. Zhao, J. Hazard. Mater., 169, 1061 (2009); doi:10.1016/j.jhazmat.2009.04.058.