Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Zn(II), Cd(II) and Hg(II) Complexes of Diethyl Thiourea and 1-Ethoxylcarbonyl-1-ethylenecarbonyl-2,2-dithiolate and Their Use to Prepare Metal Sulfides Nanoparticles
Corresponding Author(s) : Peter A. Ajibade
Asian Journal of Chemistry,
Vol. 27 No. 12 (2015): Vol 27 Issue 12
Abstract
Zn(II), Cd(II) and Hg(II) mixed complexes of ligand diethylthiourea as primary ligand and 1-ethoxylcarbonyl-1-ethylenecarbonyl-2,2-dithiolate as secondary ligand were synthesized and characterized by elemental and spectroscopic techniques. The complexes were used as precursors to prepare metal sulfide nanoparticles. The optical and structural properties of the nanoparticles were studied by UV-visible, photoluminescence, XRD and SEM. The absorption spectra of the nanoparticles show peaks which are blue shifted relative to their bulk molecules due to quantum confinement effects. The XRD diffraction patterns shows that ZnS and CdS nanoparticles are in cubic phase while the HgS nanoparticles are in metacinnabar crystalline phase. The nanoparticles sizes obtained from the TEM ranges from 2-11 nm.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Malik, N. Revaprasadu and P. O‘Brien, Chem. Mater., 13, 913 (2001); doi:10.1021/cm0011662.
- T. Trindade, P. O’Brien and X.M. Zhang, Chem. Mater., 9, 523 (1997); doi:10.1021/cm960363r.
- M. Green, P. Prince, M. Gardener and J. Steed, Adv. Mater., 16, 994 (2004); doi:10.1002/adma.200306407.
- M.A. Matchett, A.M. Viano, N.L. Adolphi, R.D. Stoddard, W.E. Buhro, M.S. Conradi and P.C. Gibbons, Chem. Mater., 4, 508 (1992); doi:10.1021/cm00021a007.
- M. Lazell and P. O’Brien, Chem. Commun., 2041 (1999); doi:10.1039/a906160f.
- M.C. Schlamp, X. Peng and A.P. Alivisatos, J. Appl. Phys., 82, 5837 (1997); doi:10.1063/1.366452.
- S. Coe, W.-K. Woo, M. Bawendi and V. Bulovic, Nature, 420, 800 (2002); doi:10.1038/nature01217.
- C.B. Murray, D.J. Norris and M.G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993); doi:10.1021/ja00072a025.
- N.L. Pickett and P. O’Brien, Chem. Rec., 1, 467 (2001); doi:10.1002/tcr.10002.
- J.H. Thurston, T.O. Ely, D. Trahan and K.H. Whitmire, Chem. Mater., 15, 4407 (2003); doi:10.1021/cm0342851.
- J.H. Thurston and K.H. Whitmire, Inorg. Chem., 42, 2014 (2003); doi:10.1021/ic026108s.
- G. Kedarnath, L.B. Kumbhare, V.K. Jain, P.P. Phadnis and M. Nethaji, Dalton Trans., 2714 (2006); doi:10.1039/b517224a.
- G. Kedarnath, S. Dey, V.K. Jain, G.K. Dey and B. Varghese, Polyhedron, 25, 2383 (2006); doi:10.1016/j.poly.2006.02.011.
- M. Jin, G. He, H. Zhang, J. Zeng, Z. Xie and Y. Xia, Angew. Chem. Int. Ed., 50, 10560 (2011); doi:10.1002/anie.201105539.
- T. Mthethwa, V.S.R. Pullabhotla, P.S. Mdluli, J. Wesley-Smith and N. Revaprasadu, Polyhedron, 28, 2977 (2009); doi:10.1016/j.poly.2009.07.019.
- J.Y. Park, C. Aliaga, R.J. Renzas, H. Lee and G. Somorjai, Catal. Lett., 129, 1 (2009); doi:10.1007/s10562-009-9871-8.
- N. Singh and S. Gupta, Synth. Met., 107, 167 (1999); doi:10.1016/S0379-6779(99)00153-8.
- N. Singh and S. Gupta, Int. J. Inorg. Mater., 2, 427 (2000); doi:10.1016/S1466-6049(00)00048-9.
- S.D. Cummings and R. Eisenberg, Inorg. Chim. Acta, 242, 225 (1996); doi:10.1016/0020-1693(95)04871-5.
- Y.-K. Yan, K.-F. Tan and M. Kurmoo, Inorg. Chim. Acta, 362, 4017 (2009); doi:10.1016/j.ica.2009.05.043.
- P. Reiss, G. Quemard, S. Carayon, J. Bleuse, F. Chandezon and A. Pron, Mater. Chem. Phys., 84, 10 (2004); doi:10.1016/j.matchemphys.2003.11.002.
- M. Soliman Selim, R. Seoudi and A.A. Shabaka, Mater. Lett., 59, 2650 (2005); doi:10.1016/j.matlet.2005.04.012.
- R.T. Downs and M. Hall-Wallace, Am. Mineral., 88, 247 (2003).
- M. Dhanam, D.P. Devasia, B. Kavitha and B. Maheswari, Digest J. Nanomater. Biostruct., 5, 587 (2010).
- Y. Yin, X. Xu, X. Ge, Y. Lu and Z. Zhang, Radiat. Phys. Chem., 55, 353 (1999); doi:10.1016/S0969-806X(98)00334-X.
- D. Denzler, M. Olschewski and K. Sattler, J. Appl. Phys., 84, 2841 (1998); doi:10.1063/1.368425.
- N.T. Tuan, N.-D. Trung-Kien, P.T. Huy and N.H. Tung, e-J. Surf. Sci. Nanotech., 9, 521 (2011); doi:10.1380/ejssnt.2011.521.
- M. Sharma, S. Kumar and O.P. Pandey, Digest J. Nanomater. Biostruct., 3, 189 (2008).
- W. Xu, Y. Wang, R. Xu, S. Liang, G. Zhang and D. Yin, J. Mater. Sci., 42, 6942 (2007); doi:10.1007/s10853-006-1332-9.
- R. Sahraei, G.M. Aval, A. Baghizadeh, M. Lamehi-Rachti, A. Goudarzi and M.H.M. Ara, Mater. Lett., 62, 4345 (2008); doi:10.1016/j.matlet.2008.07.022.
References
M.A. Malik, N. Revaprasadu and P. O‘Brien, Chem. Mater., 13, 913 (2001); doi:10.1021/cm0011662.
T. Trindade, P. O’Brien and X.M. Zhang, Chem. Mater., 9, 523 (1997); doi:10.1021/cm960363r.
M. Green, P. Prince, M. Gardener and J. Steed, Adv. Mater., 16, 994 (2004); doi:10.1002/adma.200306407.
M.A. Matchett, A.M. Viano, N.L. Adolphi, R.D. Stoddard, W.E. Buhro, M.S. Conradi and P.C. Gibbons, Chem. Mater., 4, 508 (1992); doi:10.1021/cm00021a007.
M. Lazell and P. O’Brien, Chem. Commun., 2041 (1999); doi:10.1039/a906160f.
M.C. Schlamp, X. Peng and A.P. Alivisatos, J. Appl. Phys., 82, 5837 (1997); doi:10.1063/1.366452.
S. Coe, W.-K. Woo, M. Bawendi and V. Bulovic, Nature, 420, 800 (2002); doi:10.1038/nature01217.
C.B. Murray, D.J. Norris and M.G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993); doi:10.1021/ja00072a025.
N.L. Pickett and P. O’Brien, Chem. Rec., 1, 467 (2001); doi:10.1002/tcr.10002.
J.H. Thurston, T.O. Ely, D. Trahan and K.H. Whitmire, Chem. Mater., 15, 4407 (2003); doi:10.1021/cm0342851.
J.H. Thurston and K.H. Whitmire, Inorg. Chem., 42, 2014 (2003); doi:10.1021/ic026108s.
G. Kedarnath, L.B. Kumbhare, V.K. Jain, P.P. Phadnis and M. Nethaji, Dalton Trans., 2714 (2006); doi:10.1039/b517224a.
G. Kedarnath, S. Dey, V.K. Jain, G.K. Dey and B. Varghese, Polyhedron, 25, 2383 (2006); doi:10.1016/j.poly.2006.02.011.
M. Jin, G. He, H. Zhang, J. Zeng, Z. Xie and Y. Xia, Angew. Chem. Int. Ed., 50, 10560 (2011); doi:10.1002/anie.201105539.
T. Mthethwa, V.S.R. Pullabhotla, P.S. Mdluli, J. Wesley-Smith and N. Revaprasadu, Polyhedron, 28, 2977 (2009); doi:10.1016/j.poly.2009.07.019.
J.Y. Park, C. Aliaga, R.J. Renzas, H. Lee and G. Somorjai, Catal. Lett., 129, 1 (2009); doi:10.1007/s10562-009-9871-8.
N. Singh and S. Gupta, Synth. Met., 107, 167 (1999); doi:10.1016/S0379-6779(99)00153-8.
N. Singh and S. Gupta, Int. J. Inorg. Mater., 2, 427 (2000); doi:10.1016/S1466-6049(00)00048-9.
S.D. Cummings and R. Eisenberg, Inorg. Chim. Acta, 242, 225 (1996); doi:10.1016/0020-1693(95)04871-5.
Y.-K. Yan, K.-F. Tan and M. Kurmoo, Inorg. Chim. Acta, 362, 4017 (2009); doi:10.1016/j.ica.2009.05.043.
P. Reiss, G. Quemard, S. Carayon, J. Bleuse, F. Chandezon and A. Pron, Mater. Chem. Phys., 84, 10 (2004); doi:10.1016/j.matchemphys.2003.11.002.
M. Soliman Selim, R. Seoudi and A.A. Shabaka, Mater. Lett., 59, 2650 (2005); doi:10.1016/j.matlet.2005.04.012.
R.T. Downs and M. Hall-Wallace, Am. Mineral., 88, 247 (2003).
M. Dhanam, D.P. Devasia, B. Kavitha and B. Maheswari, Digest J. Nanomater. Biostruct., 5, 587 (2010).
Y. Yin, X. Xu, X. Ge, Y. Lu and Z. Zhang, Radiat. Phys. Chem., 55, 353 (1999); doi:10.1016/S0969-806X(98)00334-X.
D. Denzler, M. Olschewski and K. Sattler, J. Appl. Phys., 84, 2841 (1998); doi:10.1063/1.368425.
N.T. Tuan, N.-D. Trung-Kien, P.T. Huy and N.H. Tung, e-J. Surf. Sci. Nanotech., 9, 521 (2011); doi:10.1380/ejssnt.2011.521.
M. Sharma, S. Kumar and O.P. Pandey, Digest J. Nanomater. Biostruct., 3, 189 (2008).
W. Xu, Y. Wang, R. Xu, S. Liang, G. Zhang and D. Yin, J. Mater. Sci., 42, 6942 (2007); doi:10.1007/s10853-006-1332-9.
R. Sahraei, G.M. Aval, A. Baghizadeh, M. Lamehi-Rachti, A. Goudarzi and M.H.M. Ara, Mater. Lett., 62, 4345 (2008); doi:10.1016/j.matlet.2008.07.022.