Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Targeted Drug Delivery System Based on Reduced Graphene Oxide
Corresponding Author(s) : Guangcheng Wei
Asian Journal of Chemistry,
Vol. 27 No. 12 (2015): Vol 27 Issue 12
Abstract
Graphene sheets as drug carrier are interesting because both sides of a single sheet can be accessible for drug binding and can afford strong non-covalent binding with aromatic drugs via simple adsorption. Here, we linked a cell specific target molecule folic acid (FA) to PEI-PEG-PEI to form the FA-PEI-PEG-FA. The large quantity of folic acid molecules which are the hydrophobic molecules could conjugate with the sheet of chemical reduced graphene oxide (rGO) and then the system of rGO-FA-PEI-PEG-PEI-FA-rGO (NG-FA-PEI-PEG) was formed. This system could exist stable in physiological solution. Folic acid molecules allowed it to specifically target CBRH-7919 liver cancer cells with folic acid receptors. The loading and release behaviours of doxorubicin (DOX) on the functionalized graphene sheets were investigated. The doxorubicin loading ratio on NG-FA-PEI-PEG (the weight ratio of drug loaded to NG-FA-PEI-PEG) was about 30.65 %. The drug release from NG-FA-PEI-PEG was pH dependent. The results of cytotoxicity (FCM assays) clearly showed that the concentration of NG-FA-PEI-PEG as the drug delivery system should be less than 60 mg/L (Here, 10 mg/L was used as the drug delivery system). These results indicated that NG-FA-PEG-PEI might be a promising candidate for drugs delivery with the characteristics of good biocompatibility and low toxicity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); doi:10.1126/science.1102896.
- K.N. Burger, R.W. Staffhorst, H.C. de Vijlder, M.J. Velinova, P.H. Bomans, P.M. Frederik and B. de Kruijff, Nat. Med., 8, 81 (2002); doi:10.1038/nm0102-81.
- W. Wei, G. Ma, G. Hu, D. Yu, T. McLeish, Z. Su and Z. Shen, J. Am. Chem. Soc., 130, 15808 (2008); doi:10.1021/ja8039585.
- L. Tang, Y. Wang, Y. Li, J. Du and J. Wang, Bioconjug. Chem., 20, 1095 (2009); doi:10.1021/bc900144m.
- Z. Liu, X. Sun, N. Nakayama-Ratchford and H. Dai, ACS Nano, 1, 50 (2007); doi:10.1021/nn700040t.
- S. Santra, C. Kaittanis, J. Grimm and J.M. Perez, Small, 5, 1862 (2009); doi:10.1002/smll.200900389.
- R. Guo, R. Li, X. Li, L. Zhang, X. Jiang and B. Liu, Small, 5, 709 (2009); doi:10.1002/smll.200801375.
- S. Purushotham and R.V. Ramanujan, Acta Biomater., 6, 502 (2010); doi:10.1016/j.actbio.2009.07.004.
- M. Yokoyama, S. Fukushima, R. Uehara, K. Okamoto, K. Kataoka, Y. Sakurai and T. Okano, J. Control. Release, 50, 79 (1998); doi:10.1016/S0168-3659(97)00115-6.
- X. Sun, Z. Liu, K. Welsher, J. Robinson, A. Goodwin, S. Zaric and H. Dai, Nano Res., 1, 203 (2008); doi:10.1007/s12274-008-8021-8.
- Z. Liu, J.T. Robinson, X. Sun and H. Dai, J. Am. Chem. Soc., 130, 10876 (2008); doi:10.1021/ja803688x.
- X.Y. Yang, X.Y. Zhang, Y.F. Ma, Y. Huang, Y. Wang and Y. Chen, J. Mater. Chem., 19, 2710 (2009); doi:10.1039/b821416f.
- X. Yang, X. Zhang, Z. Liu, Y. Ma, Y. Huang and Y. Chen, J. Phys. Chem. C, 112, 17554 (2008); doi:10.1021/jp806751k.
- L.M. Zhang, J.G. Xia, Q.H. Zhao, L.W. Liu and Z.J. Zhang, Small, 6, 537 (2010); doi:10.1002/smll.200901680.
- L.Y. Zhang, M. Yang, Q. Wang, Y. Li, R. Guo, X. Jiang, C. Yang and B. Liu, J. Control. Rel., 119, 153 (2007); doi:10.1016/j.jconrel.2007.02.013.
- M. Xie, K. Luo, B.H. Huang, S.L. Liu, J. Hu, D. Cui, Z.-L. Zhang, G.-F. Xiao and D.-W. Pang, Biomaterials, 31, 8362 (2010); doi:10.1016/j.biomaterials.2010.07.063.
- A. Gabizon, A.T. Horowitz, D. Goren, D. Tzemach, F. Mandelbaum-Shavit, M.M. Qazen and S. Zalipsky, Bioconjug. Chem., 10, 289 (1999); doi:10.1021/bc9801124.
- B. Liang, M.L. He, C.Y. Chan, Y.C. Chen, X.P. Li, Y. Li, D. Zheng, M.C. Lin, H.-F. Kung, X.-T. Shuai and Y. Peng, Biomaterials, 30, 4014 (2009); doi:10.1016/j.biomaterials.2009.04.011.
- S. Gottschalk, R.J. Cristiano, L.C. Smith and S.L. Woo, Gene Ther., 1, 185 (1994).
- N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva and A.D. Gorchinskiy, Chem. Mater., 11, 771 (1999); doi:10.1021/cm981085u.
- G.C. Wei, M.M. Yan, L.Y. Ma and H.B. Zhang, Spectrochim. Acta A, 85, 288 (2012); doi:10.1016/j.saa.2011.10.011.
- Y. Bae, W.D. Jang, N. Nishiyama, S. Fukushima and K. Kataoka, Mol. Biosyst., 1, 242 (2005); doi:10.1039/b500266d.
- J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H. Sanchez Casalongue, D. Vinh and H. Dai, J. Am. Chem. Soc., 133, 6825 (2011); doi:10.1021/ja2010175.
References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); doi:10.1126/science.1102896.
K.N. Burger, R.W. Staffhorst, H.C. de Vijlder, M.J. Velinova, P.H. Bomans, P.M. Frederik and B. de Kruijff, Nat. Med., 8, 81 (2002); doi:10.1038/nm0102-81.
W. Wei, G. Ma, G. Hu, D. Yu, T. McLeish, Z. Su and Z. Shen, J. Am. Chem. Soc., 130, 15808 (2008); doi:10.1021/ja8039585.
L. Tang, Y. Wang, Y. Li, J. Du and J. Wang, Bioconjug. Chem., 20, 1095 (2009); doi:10.1021/bc900144m.
Z. Liu, X. Sun, N. Nakayama-Ratchford and H. Dai, ACS Nano, 1, 50 (2007); doi:10.1021/nn700040t.
S. Santra, C. Kaittanis, J. Grimm and J.M. Perez, Small, 5, 1862 (2009); doi:10.1002/smll.200900389.
R. Guo, R. Li, X. Li, L. Zhang, X. Jiang and B. Liu, Small, 5, 709 (2009); doi:10.1002/smll.200801375.
S. Purushotham and R.V. Ramanujan, Acta Biomater., 6, 502 (2010); doi:10.1016/j.actbio.2009.07.004.
M. Yokoyama, S. Fukushima, R. Uehara, K. Okamoto, K. Kataoka, Y. Sakurai and T. Okano, J. Control. Release, 50, 79 (1998); doi:10.1016/S0168-3659(97)00115-6.
X. Sun, Z. Liu, K. Welsher, J. Robinson, A. Goodwin, S. Zaric and H. Dai, Nano Res., 1, 203 (2008); doi:10.1007/s12274-008-8021-8.
Z. Liu, J.T. Robinson, X. Sun and H. Dai, J. Am. Chem. Soc., 130, 10876 (2008); doi:10.1021/ja803688x.
X.Y. Yang, X.Y. Zhang, Y.F. Ma, Y. Huang, Y. Wang and Y. Chen, J. Mater. Chem., 19, 2710 (2009); doi:10.1039/b821416f.
X. Yang, X. Zhang, Z. Liu, Y. Ma, Y. Huang and Y. Chen, J. Phys. Chem. C, 112, 17554 (2008); doi:10.1021/jp806751k.
L.M. Zhang, J.G. Xia, Q.H. Zhao, L.W. Liu and Z.J. Zhang, Small, 6, 537 (2010); doi:10.1002/smll.200901680.
L.Y. Zhang, M. Yang, Q. Wang, Y. Li, R. Guo, X. Jiang, C. Yang and B. Liu, J. Control. Rel., 119, 153 (2007); doi:10.1016/j.jconrel.2007.02.013.
M. Xie, K. Luo, B.H. Huang, S.L. Liu, J. Hu, D. Cui, Z.-L. Zhang, G.-F. Xiao and D.-W. Pang, Biomaterials, 31, 8362 (2010); doi:10.1016/j.biomaterials.2010.07.063.
A. Gabizon, A.T. Horowitz, D. Goren, D. Tzemach, F. Mandelbaum-Shavit, M.M. Qazen and S. Zalipsky, Bioconjug. Chem., 10, 289 (1999); doi:10.1021/bc9801124.
B. Liang, M.L. He, C.Y. Chan, Y.C. Chen, X.P. Li, Y. Li, D. Zheng, M.C. Lin, H.-F. Kung, X.-T. Shuai and Y. Peng, Biomaterials, 30, 4014 (2009); doi:10.1016/j.biomaterials.2009.04.011.
S. Gottschalk, R.J. Cristiano, L.C. Smith and S.L. Woo, Gene Ther., 1, 185 (1994).
N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva and A.D. Gorchinskiy, Chem. Mater., 11, 771 (1999); doi:10.1021/cm981085u.
G.C. Wei, M.M. Yan, L.Y. Ma and H.B. Zhang, Spectrochim. Acta A, 85, 288 (2012); doi:10.1016/j.saa.2011.10.011.
Y. Bae, W.D. Jang, N. Nishiyama, S. Fukushima and K. Kataoka, Mol. Biosyst., 1, 242 (2005); doi:10.1039/b500266d.
J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H. Sanchez Casalongue, D. Vinh and H. Dai, J. Am. Chem. Soc., 133, 6825 (2011); doi:10.1021/ja2010175.