Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Solvent Dependent Disproportionation of Cu(II) Complexes of N2O2-Type Ligands: Direct Evidence of Formation of Phenoxyl Radical: An Experimental and Computational Study
Corresponding Author(s) : Jatindra Nath Ganguli
Asian Journal of Chemistry,
Vol. 27 No. 12 (2015): Vol 27 Issue 12
Abstract
Four Cu(II) complexes (1, 2, 3 and 4) with N2O2-type ligand, H2L1, H2L2, H2L3 and H2L4, respectively have been synthesized as the functional model for galactose oxidase. In presence of acetonitrile the Cu(II) centres in the complexes, undergo reduction with simultaneous oxidation of the ligands. The ligand oxidized products are isolated and characterized. Spectroscopic studies indicate that this disproportionation goes through the formation of a Cu(II)-phenoxyl intermediate. The complexes also undergoes the same reaction with pyridine, which indicates the involvement of the exergonic N-donor ligand for the formation of Cu(II)-phenoxyl complex. The Cu(II)-phenoxyl complexes are found to be stable in methanol in presence of a strong base. The paramagnetic centers in the Cu(II)-phenoxyl complexes were found to be weakly ferromagnetically coupled. The complexes, in acetonitrile solvent, have been found to oxidize primary alcohols to corresponding aldehydes. In absence of single crystal structures of the complexes, we optimized the structures using density functional theory (DFT). The UV-visible peaks of complexes as found from time dependent density functional theory (TDDFT) calculations match well with the observed experimental results.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Amaral, F. Kelly-Falcoz and B.L. Horecker, Methods Enzymol., 9, 87 (1966); doi:10.1016/0076-6879(66)09023-2.
- P.S. Tressel and D.J. Kosman, Methods Enzymol., 89, 163 (1982); doi:10.1016/S0076-6879(82)89029-0.
- R.A. vander Meer, J.A. Jongejan and J.A. Duine, J. Biol. Chem., 264, 7792 (1989).
- J.W. Whittaker, in eds.: M.H. Sigel and A. Sigel, Metalloenzymes Involving Amino Acid Residue and Related Radicals, Marcel Dekker, New York , vol. 30, 315 (1994).
- P.F. Knowles and N. Ito, Perspective Bio-inorg. Chem., 2, 207 (1994).
- J.W. Whittaker, in eds.: K.D. Karlin and Z. Tyeklar, Bioinorganic Chemistry of Copper, Chapman & Hall, Inc. New York, p. 447 (1993).
- N. Ito, S.E.V. Phillips, C. Stevens, Z.B. Ogel, M.J. McPherson, J.N. Keen, K.D.S. Yadav and P.F. Knowles, Nature, 350, 87 (1991); doi:10.1038/350087a0.
- N. Ito, S.E.V. Phillips, C. Stevens, Z.B. Ogel, M.J. McPherson, J.N. Keen, K.D.S. Yadav and P.F. Knowles, Faraday Discuss., 93, 75 (1992); doi:10.1039/fd9929300075.
- N. Ito, S.E.V. Phillips, K.D.S. Yadav and P.F. Knowles, J. Mol. Biol., 238, 704 (1994); doi:10.1006/jmbi.1994.1335.
- J.A. Halfen, B.A. Jazdzewski, S. Mahapatra, L.M. Berreau, E.C. Wilkinson, L. Que Jr. and W.B. Tolman, J. Am. Chem. Soc., 119, 8217 (1997); doi:10.1021/ja9700663.
- D.J. Kosman, M.J. Ettinger, R.E. Weiner and E.J. Massaro, Arch. Biochem. Biophys., 165, 456 (1974); doi:10.1016/0003-9861(74)90271-9.
- M.M. Whittaker and J.W. Whittaker, J. Biol. Chem., 263, 6074 (1988).
- M.M. Whittaker and J.W. Whittaker, J. Biol. Chem., 265, 9610 (1990).
- J.W. Whittaker, Chem. Rev., 103, 2347 (2003); doi:10.1021/cr020425z.
- J.W. Whittaker, Met. Ions Biol. Syst., 30, 315 (1994).
- J. Stubbe and W.A. Van der Donk, Chem. Rev., 98, 705 (1998); doi:10.1021/cr9400875.
- M. Taki, H. Kumei, S. Nagatomo, T. Kitagawa, S. Itoh and S. Fukuzumi, Inorg. Chim. Acta, 300, 622 (2000); doi:10.1016/S0020-1693(99)00579-4.
- A. Sokolowski, H. Leutbecher, T. Weyhermuller, R. Schnepf, E. Bothe, E. Bill, P. Hildebrandt and K. Wieghardt, J. Biol. Inorg. Chem., 2, 444 (1997); doi:10.1007/s007750050155.
- C. Ochs, F.E. Hahn and R. Frohlich, Eur. J. Inorg. Chem., 2427 (2001); doi:10.1002/1099-0682(200109)2001:9<2427::AID-EJIC2427>3.0.CO;2-7.
- Y. Wang, J.L. DuBois, B. Hedman, K.O. Hodgson and T.D.P. Stack, Science, 279, 537 (1998); doi:10.1126/science.279.5350.537.
- Y. Wang and T.D.P. Stack, J. Am. Chem. Soc., 118, 13097 (1996); doi:10.1021/ja9621354.
- P. Chaudhuri, M. Hess, J. Müller, K. Hildenbrand, E. Bill, T. Weyhermüller and K. Wieghardt, J. Am. Chem. Soc., 121, 9599 (1999); doi:10.1021/ja991481t.
- P. Chaudhuri, M. Hess, T. Weyhermuller and K. Wieghardt, Angew. Chem., 111, 1165 (1999); doi:10.1002/(SICI)1521-3757(19990419)111:8<1165::AID-ANGE1165>3.0.CO;2-X.
- D. Zurita, I. Gautier-Luneau, S. Ménage, J.-L. Pierre and E. Saint-Aman, J. Biol. Inorg. Chem., 2, 46 (1997); doi:10.1007/s007750050105.
- S. Itoh, M. Taki, S. Takayama, S. Nagatomo, T. Kitagawa, N. Sakurada, R. Arakawa and S. Fukuzumi, Angew. Chem., 111, 2944 (1999); doi:10.1002/(SICI)1521-3757(19990917)111:18<2944::AID-ANGE2944>3.0.CO;2-F.
- M. Vaidyanathan, M. Palaniandavar and R.S. Gopalan, Inorg. Chim. Acta, 324, 241 (2001); doi:10.1016/S0020-1693(01)00606-5.
- M. Vaidyanathan, R. Viswanathan, M. Palaniandavar, T. Balasubramanian, P. Prabhaharan and P.T. Muthiah, Inorg. Chem., 37, 6418 (1998); doi:10.1021/ic971567s.
- B.A. Jazdzewski and W.B. Tolman, Coord. Chem. Rev., 200-202, 633 (2000); doi:10.1016/S0010-8545(00)00342-8.
- R.K. Debnath, P. Kumar, A. Kalita, B. Mondal and J.N. Ganguli, Polyhedron, 51, 222 (2013); doi:10.1016/j.poly.2012.12.036.
- W. Koch and M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, edn 2, Wiley-VCH, New York (2001).
- G. Scalmani, M.J. Frisch, B. Mennucci, J. Tomasi, R. Cammi and V. Barone, J. Chem. Phys., 124, 94107 (2006); doi:10.1063/1.2173258.
- Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT (2010).
- SMART, SAINT and XPREP, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA (1995).
- G.M. Sheldrick, SADABS: Software for Empirical Absorption Correction, University of Gottingen, Institut fur Anorganische Chemieder Universitat, Tammanstrasse 4, D-3400 Gottingen, Germany (1999–2003).
- G.M. Sheldrick, SHELXS-97, University of Gottingen, Germany (1997).
- G. Dutta, R.K. Debnath, A. Kalita, P. Kumar, M. Sarma, R.B. Shankar and B. Mondal, Polyhedron, 30, 293 (2011); doi:10.1016/j.poly.2010.10.029.
- E.Y. Tshuva, I. Goldberg, M. Kol and Z. Goldschmidt, Inorg. Chem., 40, 4263 (2001); doi:10.1021/ic010210s.
- H. Sopo, A. Lehtonen and R. Sillanpaa, Polyhedron, 27, 95 (2008); doi:10.1016/j.poly.2007.08.047.
- J.A. Halfen, V.G. Young and W.B. Tolman, Angew. Chem., 108, 1832 (1996); doi:10.1002/ange.19961081532.
- E. Bill, J. Muller, T. Weyhermuller and K. Wieghardt, Inorg. Chem., 38, 5795 (1999); doi:10.1021/ic990396j.
- J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 105, 2999 (2005); doi:10.1021/cr9904009.
- D. Zurita, C. Scheer, J.-L. Pierre and E. Saint-Aman, Dalton Trans., 4331 (1996); doi:10.1039/DT9960004331.
- S. Itoh, S. Takayama, R. Arakawa, A. Furuta, A.M. Komatsu, A. Ishida, S. Takamuku, S. Fukuzumi, Electronic Effect of the Thioether Group in the Novel Organic Cofactor, Inorg. Chem., 36, 1407 (1997); doi:10.1021/ic961144a.
- M.A. Halcrow, L.M.L. Chia, J.E. Davies, X. Liu, L.J. Yellowlees, E.J. L. McInnes and F.E. Mabbs, Chem. Commun., 2465 (1998); doi:10.1039/A807076H.
- F. Michel, F. Thomas, S. Hamman, E. Saint-Aman, C. Bucher and J.-L. Pierre, Chem. Eur. J., 10, 4115 (2004); doi:10.1002/chem.200400099.
- Y. Shimazaki, S. Huth, A. Odani and O. Yamauchi, Angew. Chem., 39, 1666 (2000); doi:10.1002/(SICI)1521-3773(20000502)39:9<1666::AID-ANIE1666>3.0.CO;2-O.
- F. Michel, S. Torelli, F. Thomas, C. Duboc, C. Philouze, C. Belle, S. Hamman, E. Saint-Aman and J.-L. Pierre, Angew. Chem., 117, 437 (2005); doi:10.1002/ange.200590006.
- Y. Shimazaki, S. Huth, S. Hirota and O. Yamauchi, Inorg. Chim. Acta, 331, 168 (2002); doi:10.1016/S0020-1693(01)00781-2.
- X. Ribas, D.A. Jackson, B. Donnadieu, J. Mahia, T. Parella, R. Xifra, B. Hedman, K.O. Hodgson, A. Llobet and T.D.P. Stack, Angew. Chem., 114, 3117 (2002); doi:10.1002/1521-3757(20020816)114:16<3117::AID-ANGE3117>3.0.CO;2-U.
References
D. Amaral, F. Kelly-Falcoz and B.L. Horecker, Methods Enzymol., 9, 87 (1966); doi:10.1016/0076-6879(66)09023-2.
P.S. Tressel and D.J. Kosman, Methods Enzymol., 89, 163 (1982); doi:10.1016/S0076-6879(82)89029-0.
R.A. vander Meer, J.A. Jongejan and J.A. Duine, J. Biol. Chem., 264, 7792 (1989).
J.W. Whittaker, in eds.: M.H. Sigel and A. Sigel, Metalloenzymes Involving Amino Acid Residue and Related Radicals, Marcel Dekker, New York , vol. 30, 315 (1994).
P.F. Knowles and N. Ito, Perspective Bio-inorg. Chem., 2, 207 (1994).
J.W. Whittaker, in eds.: K.D. Karlin and Z. Tyeklar, Bioinorganic Chemistry of Copper, Chapman & Hall, Inc. New York, p. 447 (1993).
N. Ito, S.E.V. Phillips, C. Stevens, Z.B. Ogel, M.J. McPherson, J.N. Keen, K.D.S. Yadav and P.F. Knowles, Nature, 350, 87 (1991); doi:10.1038/350087a0.
N. Ito, S.E.V. Phillips, C. Stevens, Z.B. Ogel, M.J. McPherson, J.N. Keen, K.D.S. Yadav and P.F. Knowles, Faraday Discuss., 93, 75 (1992); doi:10.1039/fd9929300075.
N. Ito, S.E.V. Phillips, K.D.S. Yadav and P.F. Knowles, J. Mol. Biol., 238, 704 (1994); doi:10.1006/jmbi.1994.1335.
J.A. Halfen, B.A. Jazdzewski, S. Mahapatra, L.M. Berreau, E.C. Wilkinson, L. Que Jr. and W.B. Tolman, J. Am. Chem. Soc., 119, 8217 (1997); doi:10.1021/ja9700663.
D.J. Kosman, M.J. Ettinger, R.E. Weiner and E.J. Massaro, Arch. Biochem. Biophys., 165, 456 (1974); doi:10.1016/0003-9861(74)90271-9.
M.M. Whittaker and J.W. Whittaker, J. Biol. Chem., 263, 6074 (1988).
M.M. Whittaker and J.W. Whittaker, J. Biol. Chem., 265, 9610 (1990).
J.W. Whittaker, Chem. Rev., 103, 2347 (2003); doi:10.1021/cr020425z.
J.W. Whittaker, Met. Ions Biol. Syst., 30, 315 (1994).
J. Stubbe and W.A. Van der Donk, Chem. Rev., 98, 705 (1998); doi:10.1021/cr9400875.
M. Taki, H. Kumei, S. Nagatomo, T. Kitagawa, S. Itoh and S. Fukuzumi, Inorg. Chim. Acta, 300, 622 (2000); doi:10.1016/S0020-1693(99)00579-4.
A. Sokolowski, H. Leutbecher, T. Weyhermuller, R. Schnepf, E. Bothe, E. Bill, P. Hildebrandt and K. Wieghardt, J. Biol. Inorg. Chem., 2, 444 (1997); doi:10.1007/s007750050155.
C. Ochs, F.E. Hahn and R. Frohlich, Eur. J. Inorg. Chem., 2427 (2001); doi:10.1002/1099-0682(200109)2001:9<2427::AID-EJIC2427>3.0.CO;2-7.
Y. Wang, J.L. DuBois, B. Hedman, K.O. Hodgson and T.D.P. Stack, Science, 279, 537 (1998); doi:10.1126/science.279.5350.537.
Y. Wang and T.D.P. Stack, J. Am. Chem. Soc., 118, 13097 (1996); doi:10.1021/ja9621354.
P. Chaudhuri, M. Hess, J. Müller, K. Hildenbrand, E. Bill, T. Weyhermüller and K. Wieghardt, J. Am. Chem. Soc., 121, 9599 (1999); doi:10.1021/ja991481t.
P. Chaudhuri, M. Hess, T. Weyhermuller and K. Wieghardt, Angew. Chem., 111, 1165 (1999); doi:10.1002/(SICI)1521-3757(19990419)111:8<1165::AID-ANGE1165>3.0.CO;2-X.
D. Zurita, I. Gautier-Luneau, S. Ménage, J.-L. Pierre and E. Saint-Aman, J. Biol. Inorg. Chem., 2, 46 (1997); doi:10.1007/s007750050105.
S. Itoh, M. Taki, S. Takayama, S. Nagatomo, T. Kitagawa, N. Sakurada, R. Arakawa and S. Fukuzumi, Angew. Chem., 111, 2944 (1999); doi:10.1002/(SICI)1521-3757(19990917)111:18<2944::AID-ANGE2944>3.0.CO;2-F.
M. Vaidyanathan, M. Palaniandavar and R.S. Gopalan, Inorg. Chim. Acta, 324, 241 (2001); doi:10.1016/S0020-1693(01)00606-5.
M. Vaidyanathan, R. Viswanathan, M. Palaniandavar, T. Balasubramanian, P. Prabhaharan and P.T. Muthiah, Inorg. Chem., 37, 6418 (1998); doi:10.1021/ic971567s.
B.A. Jazdzewski and W.B. Tolman, Coord. Chem. Rev., 200-202, 633 (2000); doi:10.1016/S0010-8545(00)00342-8.
R.K. Debnath, P. Kumar, A. Kalita, B. Mondal and J.N. Ganguli, Polyhedron, 51, 222 (2013); doi:10.1016/j.poly.2012.12.036.
W. Koch and M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, edn 2, Wiley-VCH, New York (2001).
G. Scalmani, M.J. Frisch, B. Mennucci, J. Tomasi, R. Cammi and V. Barone, J. Chem. Phys., 124, 94107 (2006); doi:10.1063/1.2173258.
Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT (2010).
SMART, SAINT and XPREP, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA (1995).
G.M. Sheldrick, SADABS: Software for Empirical Absorption Correction, University of Gottingen, Institut fur Anorganische Chemieder Universitat, Tammanstrasse 4, D-3400 Gottingen, Germany (1999–2003).
G.M. Sheldrick, SHELXS-97, University of Gottingen, Germany (1997).
G. Dutta, R.K. Debnath, A. Kalita, P. Kumar, M. Sarma, R.B. Shankar and B. Mondal, Polyhedron, 30, 293 (2011); doi:10.1016/j.poly.2010.10.029.
E.Y. Tshuva, I. Goldberg, M. Kol and Z. Goldschmidt, Inorg. Chem., 40, 4263 (2001); doi:10.1021/ic010210s.
H. Sopo, A. Lehtonen and R. Sillanpaa, Polyhedron, 27, 95 (2008); doi:10.1016/j.poly.2007.08.047.
J.A. Halfen, V.G. Young and W.B. Tolman, Angew. Chem., 108, 1832 (1996); doi:10.1002/ange.19961081532.
E. Bill, J. Muller, T. Weyhermuller and K. Wieghardt, Inorg. Chem., 38, 5795 (1999); doi:10.1021/ic990396j.
J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 105, 2999 (2005); doi:10.1021/cr9904009.
D. Zurita, C. Scheer, J.-L. Pierre and E. Saint-Aman, Dalton Trans., 4331 (1996); doi:10.1039/DT9960004331.
S. Itoh, S. Takayama, R. Arakawa, A. Furuta, A.M. Komatsu, A. Ishida, S. Takamuku, S. Fukuzumi, Electronic Effect of the Thioether Group in the Novel Organic Cofactor, Inorg. Chem., 36, 1407 (1997); doi:10.1021/ic961144a.
M.A. Halcrow, L.M.L. Chia, J.E. Davies, X. Liu, L.J. Yellowlees, E.J. L. McInnes and F.E. Mabbs, Chem. Commun., 2465 (1998); doi:10.1039/A807076H.
F. Michel, F. Thomas, S. Hamman, E. Saint-Aman, C. Bucher and J.-L. Pierre, Chem. Eur. J., 10, 4115 (2004); doi:10.1002/chem.200400099.
Y. Shimazaki, S. Huth, A. Odani and O. Yamauchi, Angew. Chem., 39, 1666 (2000); doi:10.1002/(SICI)1521-3773(20000502)39:9<1666::AID-ANIE1666>3.0.CO;2-O.
F. Michel, S. Torelli, F. Thomas, C. Duboc, C. Philouze, C. Belle, S. Hamman, E. Saint-Aman and J.-L. Pierre, Angew. Chem., 117, 437 (2005); doi:10.1002/ange.200590006.
Y. Shimazaki, S. Huth, S. Hirota and O. Yamauchi, Inorg. Chim. Acta, 331, 168 (2002); doi:10.1016/S0020-1693(01)00781-2.
X. Ribas, D.A. Jackson, B. Donnadieu, J. Mahia, T. Parella, R. Xifra, B. Hedman, K.O. Hodgson, A. Llobet and T.D.P. Stack, Angew. Chem., 114, 3117 (2002); doi:10.1002/1521-3757(20020816)114:16<3117::AID-ANGE3117>3.0.CO;2-U.