Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Sorption of Technetium-99 from Low-Level Radioactive Waste Using Different Adsorbent Materials
Corresponding Author(s) : H.M.H. Gad
Asian Journal of Chemistry,
Vol. 27 No. 12 (2015): Vol 27 Issue 12
Abstract
This work aims to investigate the empathy and adsorption capacity of 99Tc in pertechnetate form (TcO4-) using three prepared activated carbons. The carbon samples were activated with phosphoric acid using 50 % saw dust + 50 % rice husk (C-1), 100 % saw dust (C-2) and 100 % rice husk (C-3). Adsorption of 99Tc is pH dependent, where the adsorbed value of 99Tc decreases as the pH increases. Around 3 h mixing time is enough for TcO4- sorption by C-1 and C-3, while 100 min are sufficient for adsorption by C-2. The distribution coefficients evaluated from this study reveal that the adsorption empathy towards TcO4- follows the sequence: C-2 > C-3 > C-1 with Kf values 16121, 6328 and 5431, respectively. The maximum adsorption capacities (qmax) calculated from Langmuir equation follow sequence of: 316, 264 and 250 mg Kg-1 for C-2, C-3 and C-1 sample, respectively. The results showed that the locally prepared low-cost activated carbon is a promising candidate for a sustainable solution for 99Tc removal and immobilization.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Li and X. Pang, Cement Concr. Res., 65, 52 (2014); doi:10.1016/j.cemconres.2014.07.013.
- Q. Hu, J.-Q. Weng and J.-S. Wang, J. Environ. Radioact., 101, 426 (2010); doi:10.1016/j.jenvrad.2008.08.004.
- P.J. Kershaw, D. McCubbin and K.S. Leonard, Sci. Total Environ., 237–238, 119 (1999); doi:10.1016/S0048-9697(99)00129-1.
- N. Momoshima, M. Sayad and Y. Takashima, Radiochim. Acta, 63(s1), 73 (1993); doi:10.1524/ract.1993.63.special-issue.73.
- P. Rajec, M. Galambos, M. Dano, O.Rosskopfová, M. caplovicová, P. Hudec, M. Hornácek, I. Novák, D. Berek and Ľ. Caplovic, J. Radioanal. Nucl. Chem., 303, 277 (2015); doi:10.1007/s10967-014-3303-y.
- A.F. Seliman, K. Helariutta, S.J. Wiktorowicz, H. Tenhu and R. Harjula, J. Environ. Rad., 126, 156 (2013); doi:10.1016/j.jenvrad.2013.07.025.
- Z.T. Yao, X.S. Ji, P.K. Sarker, J.H. Tang, L.Q. Ge, M.S. Xia and Y.Q. Xi, Earth Sci. Rev., 141, 105 (2015); doi:10.1016/j.earscirev.2014.11.016.
- D. Li, D.I. Kaplan, A.S. Knox, K.P. Crapse and D.P. Diprete, J. Environ. Radioact., 136, 56 (2014); doi:10.1016/j.jenvrad.2014.05.010.
- B. Gu, E.K. Dowlen, L. Liang and J.L. Clausen, Sea Technol., 6, 123 (1996); doi:10.1016/0956-9618(96)00147-6.
- E. Holm, T. Gäfvert, P. Lindahl and P. Roos, Appl. Radiat. Isot., 53, 153 (2000); doi:10.1016/S0969-8043(00)00127-5.
- I. Yamagishi and M. Kubota, J. Nucl. Sci. Technol., 26, 1038 (1989); doi:10.3327/jnst.26.1038.
- K. Ito and K. Akiba, J. Radioanal. Nucl. Chem., 152, 381 (1991); doi:10.1007/BF02104691.
- P. Galiatsatou, M. Metaxas and V. Kasselouri-Rigopoulou, Mikrochim. Acta, 136, 147 (2001); doi:10.1007/s006040170045.
- I.A. Obiora-Okafo and O.D. Onukwuli, Int. J. Multidiscipl. Sci. Eng., 4, 45 (2013).
- Z.A. Alothman, M.A. Habila and R. Ali, International Conference on Biology, Environment & Chemistry, pp. 72-76 (2011).
- D.L. Pavia, G.M. Lampman and G.S. Kaiz, Introduction to Spectroscopy: A Guide for Students of Organic Chemistry, WB Saunders, Philadelphia, USA (1987).
- L. Wang, Y. Zhou and J. Qiu, Micropor. Mesopor. Mater., 174, 67 (2013); doi:10.1016/j.micromeso.2013.02.024.
- K.S.W. Sing, Pure Appl. Chem., 57, 603 (1985); doi:10.1351/pac198557040603.
- Ihsanullah, Sep. Sci. Technol., 29, 239 (1994); doi:10.1080/01496399408002480.
- M. Takeuchi, S. Tanaka and M. Yamawaki, Radiochim. Acta, 63(s1), 97 (1993); doi:10.1524/ract.1993.63.special-issue.97.
- I.L. Morgan and W.D. Bostick, Performance of Testing of Grout-Based Waste Forms for the Solidification of Anion Exchange Resins, K/QT-382.Oak Ridge K-25 Site, Oak Ridge, TN, USA (1990).
- G.D. Del-Cul, W.D. Bostick, D.R. Trotter and P.E. Osborne, Sep. Sci. Technol., 28, 551 (1993); doi:10.1080/01496399308019506.
- F.L. Slejko, Adsorption Technology: A Step-Step Approach to Process Evaluation and Application, Marcel Dekker, New York and Basel (1985).
- S. Azizian, J. Colloid Interf. Sci., 276, 47 (2004); doi:10.1016/j.jcis.2004.03.048.
- X.-S. Wang, J. Huang, H.-Q. Hu, J. Wang and Y. Qin, J. Hazard. Mater., 142, 468 (2007); doi:10.1016/j.jhazmat.2006.08.047.
- V. Srihari, S. Madhan Babu and A. Das, J. Appl. Sci., 6, 47 (2005).
- S. Basha and Z.V.P. Murthy, Process Biochem., 42, 1521 (2007); doi:10.1016/j.procbio.2007.08.004.
- E. Erdem, N. Karapinar and R. Donat, J. Colloid Interf. Sci., 280, 309 (2004); doi:10.1016/j.jcis.2004.08.028.
References
K. Li and X. Pang, Cement Concr. Res., 65, 52 (2014); doi:10.1016/j.cemconres.2014.07.013.
Q. Hu, J.-Q. Weng and J.-S. Wang, J. Environ. Radioact., 101, 426 (2010); doi:10.1016/j.jenvrad.2008.08.004.
P.J. Kershaw, D. McCubbin and K.S. Leonard, Sci. Total Environ., 237–238, 119 (1999); doi:10.1016/S0048-9697(99)00129-1.
N. Momoshima, M. Sayad and Y. Takashima, Radiochim. Acta, 63(s1), 73 (1993); doi:10.1524/ract.1993.63.special-issue.73.
P. Rajec, M. Galambos, M. Dano, O.Rosskopfová, M. caplovicová, P. Hudec, M. Hornácek, I. Novák, D. Berek and Ľ. Caplovic, J. Radioanal. Nucl. Chem., 303, 277 (2015); doi:10.1007/s10967-014-3303-y.
A.F. Seliman, K. Helariutta, S.J. Wiktorowicz, H. Tenhu and R. Harjula, J. Environ. Rad., 126, 156 (2013); doi:10.1016/j.jenvrad.2013.07.025.
Z.T. Yao, X.S. Ji, P.K. Sarker, J.H. Tang, L.Q. Ge, M.S. Xia and Y.Q. Xi, Earth Sci. Rev., 141, 105 (2015); doi:10.1016/j.earscirev.2014.11.016.
D. Li, D.I. Kaplan, A.S. Knox, K.P. Crapse and D.P. Diprete, J. Environ. Radioact., 136, 56 (2014); doi:10.1016/j.jenvrad.2014.05.010.
B. Gu, E.K. Dowlen, L. Liang and J.L. Clausen, Sea Technol., 6, 123 (1996); doi:10.1016/0956-9618(96)00147-6.
E. Holm, T. Gäfvert, P. Lindahl and P. Roos, Appl. Radiat. Isot., 53, 153 (2000); doi:10.1016/S0969-8043(00)00127-5.
I. Yamagishi and M. Kubota, J. Nucl. Sci. Technol., 26, 1038 (1989); doi:10.3327/jnst.26.1038.
K. Ito and K. Akiba, J. Radioanal. Nucl. Chem., 152, 381 (1991); doi:10.1007/BF02104691.
P. Galiatsatou, M. Metaxas and V. Kasselouri-Rigopoulou, Mikrochim. Acta, 136, 147 (2001); doi:10.1007/s006040170045.
I.A. Obiora-Okafo and O.D. Onukwuli, Int. J. Multidiscipl. Sci. Eng., 4, 45 (2013).
Z.A. Alothman, M.A. Habila and R. Ali, International Conference on Biology, Environment & Chemistry, pp. 72-76 (2011).
D.L. Pavia, G.M. Lampman and G.S. Kaiz, Introduction to Spectroscopy: A Guide for Students of Organic Chemistry, WB Saunders, Philadelphia, USA (1987).
L. Wang, Y. Zhou and J. Qiu, Micropor. Mesopor. Mater., 174, 67 (2013); doi:10.1016/j.micromeso.2013.02.024.
K.S.W. Sing, Pure Appl. Chem., 57, 603 (1985); doi:10.1351/pac198557040603.
Ihsanullah, Sep. Sci. Technol., 29, 239 (1994); doi:10.1080/01496399408002480.
M. Takeuchi, S. Tanaka and M. Yamawaki, Radiochim. Acta, 63(s1), 97 (1993); doi:10.1524/ract.1993.63.special-issue.97.
I.L. Morgan and W.D. Bostick, Performance of Testing of Grout-Based Waste Forms for the Solidification of Anion Exchange Resins, K/QT-382.Oak Ridge K-25 Site, Oak Ridge, TN, USA (1990).
G.D. Del-Cul, W.D. Bostick, D.R. Trotter and P.E. Osborne, Sep. Sci. Technol., 28, 551 (1993); doi:10.1080/01496399308019506.
F.L. Slejko, Adsorption Technology: A Step-Step Approach to Process Evaluation and Application, Marcel Dekker, New York and Basel (1985).
S. Azizian, J. Colloid Interf. Sci., 276, 47 (2004); doi:10.1016/j.jcis.2004.03.048.
X.-S. Wang, J. Huang, H.-Q. Hu, J. Wang and Y. Qin, J. Hazard. Mater., 142, 468 (2007); doi:10.1016/j.jhazmat.2006.08.047.
V. Srihari, S. Madhan Babu and A. Das, J. Appl. Sci., 6, 47 (2005).
S. Basha and Z.V.P. Murthy, Process Biochem., 42, 1521 (2007); doi:10.1016/j.procbio.2007.08.004.
E. Erdem, N. Karapinar and R. Donat, J. Colloid Interf. Sci., 280, 309 (2004); doi:10.1016/j.jcis.2004.08.028.