Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Molecular Docking Studies on Novel Phenyl Hydrazine Derivatives of Piperidones for Anticancer Efficiency
Corresponding Author(s) : P. Rajesh
Asian Journal of Chemistry,
Vol. 27 No. 11 (2015): Vol 27 Issue 11
Abstract
Phenyl hydrazine derivatives of some 2, 6-diphenyl-4-piperidones (3-4) were synthesized by the reaction of piperidone derivatives with phenyl hydrazine. The synthesized compounds (3-4) were characterized using IR, 1H NMR and 13C NMR techniques. ADME-Tox properties of the two compounds showed the drug likeliness property and found to obey Lipinski’s rule of five. Molecular docking study for both the synthesized compounds (3-4) exhibited significant binding potency to the target protein structures. The glide score (G.Score) was least observed with dihydrofolate reductase protein which was -7.88 and -5.44 for compounds (3) and (4) respectively. The hydrogen bonds were formed with the residues THR56, SER59 of 2.1 Å, 2.4 Å bond. The Glide score was observed nearly equal to the quinazolinone derivative against dihydrofolate reductase. Therefore further studies could be carried out for the synthesized compounds as lead molecule for cancer drug development.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.N. Kelly and A. Strasser, Cell Death Differ., 18, 1414 (2011); doi:10.1038/cdd.2011.17.
- Z. Culig, H. Klocker and G. Bartsch, Endocr. Relat. Cancer, 9, 155 (2002); doi:10.1677/erc.0.0090155.
- K.W. Yip and J.C. Reed, Oncogene, 27, 6398 (2008); doi:10.1038/onc.2008.307.
- W.J. Placzek, J. Wei, S. Kitada, D. Zhai, J.C. Reed and M. Pellecchia, Cell Death Dis., 1, 1 (2010); doi:10.1038/cddis.2010.18.
- L. Gandhi, D.R. Camidge, M. Ribeiro de Oliveira, P. Bonomi, D. Gandara, D. Khaira, C.L. Hann, E.M. McKeegan, E. Litvinovich, P.M. Hemken, C. Dive, S.H. Enschede, C. Nolan, Y.-L. Chiu, T. Busman, H. Xiong, A.P. Krivoshik, R. Humerickhouse, G.I. Shapiro and C.M. Rudin, J. Clin. Oncol., 29, 909 (2011); doi:10.1200/JCO.2010.31.6208.
- A. Ferrandez, S. Prescott and R. Burt, Curr. Pharm. Des., 9, 2229 (2003); doi:10.2174/1381612033454036.
- Regular Use of Selective COX-2 Inhibitors Decreases Risk of Breast Cancer, Science Daily, BioMed Central (2006).
- M.J. Chen, T. Shimada, A.D. Moulton, A. Cline, R.K. Humphries, J. Maizel and A.W. Nienhuis, J. Biol. Chem., 259, 3933 (1984).
- M. Marino and P. Galluzzo, Cancer Ther., 6, 149 (2008).
- F. Lumachi, A. Brunello, M. Maruzzo, U. Basso and S.M. Basso, Curr. Med. Chem., 20, 596 (2013); doi:10.2174/092986713804999303.
- N.Z. Lu, J.B. Collins, S.F. Grissom and J.A. Cidlowski, Mol. Cell. Biol., 27, 7143 (2007); doi:10.1128/MCB.00253-07.
- G. Schlossmacher, A. Stevens and A. White, J. Endocrinol., 211, 17 (2011); doi:10.1530/JOE-11-0135.
- C.R. Noller and V. Baliah, J. Am. Chem. Soc., 70, 3853 (1948); doi:10.1021/ja01191a092.
- C.A. Lipinski, Drug Discov. Today.Technol., 1, 337 (2004); doi:10.1016/j.ddtec.2004.11.007.
- M. Priya, K. Girija, M. Karikalan and N. Ravichandran, Int. J. Pharm. Chem. Sci., 1, 503 (2012).
References
P.N. Kelly and A. Strasser, Cell Death Differ., 18, 1414 (2011); doi:10.1038/cdd.2011.17.
Z. Culig, H. Klocker and G. Bartsch, Endocr. Relat. Cancer, 9, 155 (2002); doi:10.1677/erc.0.0090155.
K.W. Yip and J.C. Reed, Oncogene, 27, 6398 (2008); doi:10.1038/onc.2008.307.
W.J. Placzek, J. Wei, S. Kitada, D. Zhai, J.C. Reed and M. Pellecchia, Cell Death Dis., 1, 1 (2010); doi:10.1038/cddis.2010.18.
L. Gandhi, D.R. Camidge, M. Ribeiro de Oliveira, P. Bonomi, D. Gandara, D. Khaira, C.L. Hann, E.M. McKeegan, E. Litvinovich, P.M. Hemken, C. Dive, S.H. Enschede, C. Nolan, Y.-L. Chiu, T. Busman, H. Xiong, A.P. Krivoshik, R. Humerickhouse, G.I. Shapiro and C.M. Rudin, J. Clin. Oncol., 29, 909 (2011); doi:10.1200/JCO.2010.31.6208.
A. Ferrandez, S. Prescott and R. Burt, Curr. Pharm. Des., 9, 2229 (2003); doi:10.2174/1381612033454036.
Regular Use of Selective COX-2 Inhibitors Decreases Risk of Breast Cancer, Science Daily, BioMed Central (2006).
M.J. Chen, T. Shimada, A.D. Moulton, A. Cline, R.K. Humphries, J. Maizel and A.W. Nienhuis, J. Biol. Chem., 259, 3933 (1984).
M. Marino and P. Galluzzo, Cancer Ther., 6, 149 (2008).
F. Lumachi, A. Brunello, M. Maruzzo, U. Basso and S.M. Basso, Curr. Med. Chem., 20, 596 (2013); doi:10.2174/092986713804999303.
N.Z. Lu, J.B. Collins, S.F. Grissom and J.A. Cidlowski, Mol. Cell. Biol., 27, 7143 (2007); doi:10.1128/MCB.00253-07.
G. Schlossmacher, A. Stevens and A. White, J. Endocrinol., 211, 17 (2011); doi:10.1530/JOE-11-0135.
C.R. Noller and V. Baliah, J. Am. Chem. Soc., 70, 3853 (1948); doi:10.1021/ja01191a092.
C.A. Lipinski, Drug Discov. Today.Technol., 1, 337 (2004); doi:10.1016/j.ddtec.2004.11.007.
M. Priya, K. Girija, M. Karikalan and N. Ravichandran, Int. J. Pharm. Chem. Sci., 1, 503 (2012).