Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Numerical Analysis of Droplet Formation and Effect of Ink Properties in Shear-Type Piezoelectric Inkjet Printhead
Corresponding Author(s) : Kyoungwoo Park
Asian Journal of Chemistry,
Vol. 27 No. 11 (2015): Vol 27 Issue 11
Abstract
In digital textile printing (DTP) system, the selection of inkjet printhead is one of the core technologies. The printing quality such as the volume and velocity of droplets as well as the formation of satellite droplets is known to be closely related to the injection behaviours of the ink droplet. In the present work, we investigate the droplet behaviour of micro-inkjet for shear-mode piezoelectric (PZT) actuators numerically. The transient three-dimensional conservation equations of mass and momentum are solved by the computational fluid dynamics. The continuous surface force model is used in order to predict the effect of surface tension force in the free surface flow. The volume-of-fluid method with the piecewise linear interface construction scheme is employed both for tracking the interfacial movement and reconstructing the interface between liquid and gas (i.e., ink and air). This study predict the droplet formation characteristics for the given properties of ink and geometry of printhead and the effects of thermal properties of ink and nozzle shape on the droplet quality are also investigated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.P. Le, J. Imaging Sci. Technol., 42, 49 (1998).
- J. Brunahl and A.M. Grishin, Sens. Actuators A, 101, 371 (2002); doi:10.1016/S0924-4247(02)00212-1.
- J.E. Fromm, IBM J. Res. Develop., 28, 322 (1984); doi:10.1147/rd.283.0322.
- F. Pan, J. Kubby and J. Chen, J. Micromech. Microeng., 12, 70 (2002); doi:10.1088/0960-1317/12/1/311.
- A.S. Yang, J.C. Yang and M.C. Hong, J. Micromech. Microeng., 16, 180 (2006); doi:10.1088/0960-1317/16/1/024.
- C.W. Hirt and B.D. Nichols, J. Comput. Phys., 39, 201 (1981); doi:10.1016/0021-9991(81)90145-5.
- D.L. Youngs, in eds.: K.W. Morton and M.I. Norman, Time-Dependent Multi-Material Flow with Large Fluid Distribution, In: Numerical Methods for Fluid Dynamics, pp. 187-221 (1986).
- D.B. Kothe, W.J. Rider, S.J. Mosso, J.S. Brock and J.I. Hochstein, Volume Tracking of Interfaces having Surface Tension in Two and Three Dimensional, AIAA 96-0859.
- STAR CCM+, User’s guide, Release 8.02(2014), CD-Adapco.
- S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere (1980).
References
H.P. Le, J. Imaging Sci. Technol., 42, 49 (1998).
J. Brunahl and A.M. Grishin, Sens. Actuators A, 101, 371 (2002); doi:10.1016/S0924-4247(02)00212-1.
J.E. Fromm, IBM J. Res. Develop., 28, 322 (1984); doi:10.1147/rd.283.0322.
F. Pan, J. Kubby and J. Chen, J. Micromech. Microeng., 12, 70 (2002); doi:10.1088/0960-1317/12/1/311.
A.S. Yang, J.C. Yang and M.C. Hong, J. Micromech. Microeng., 16, 180 (2006); doi:10.1088/0960-1317/16/1/024.
C.W. Hirt and B.D. Nichols, J. Comput. Phys., 39, 201 (1981); doi:10.1016/0021-9991(81)90145-5.
D.L. Youngs, in eds.: K.W. Morton and M.I. Norman, Time-Dependent Multi-Material Flow with Large Fluid Distribution, In: Numerical Methods for Fluid Dynamics, pp. 187-221 (1986).
D.B. Kothe, W.J. Rider, S.J. Mosso, J.S. Brock and J.I. Hochstein, Volume Tracking of Interfaces having Surface Tension in Two and Three Dimensional, AIAA 96-0859.
STAR CCM+, User’s guide, Release 8.02(2014), CD-Adapco.
S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere (1980).