Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Demetallization by MCM-48 from Asphalten of Vacuum Residual Oils: Analysis by UV-Visible Spectrophotometer
Corresponding Author(s) : Seung Kyu Park
Asian Journal of Chemistry,
Vol. 27 No. 11 (2015): Vol 27 Issue 11
Abstract
In this study, MCM-48 shows the effective elimination of Ni(II) among several adsorbents from asphalten of vacuum residual oils. The elimination can be monitored by the absorption of UV-visible spectrophotomer and time-of-flight secondary ion mass spectrometry (SIMS-TOF). The combination of the analysis of UV-visible spectroscopy and SIMS-TOF analysis provide the concrete evidence for the elimination of vanadium and sulfur from the asphalten part of heavy residual oil through the adsorption process onto MCM-48 adsorbent.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.F. Ali and S. Abbas, Fuel Process. Technol., 87, 573 (2006); doi:10.1016/j.fuproc.2006.03.001.
- J.S.F. Pereira, D.P. Moraes, F.C. Antes, L.O. Diehl, M.F.P. Santos, R.C.L. Guimaraes, T.C.O. Fonseca, V.L. Dressler and E.M.M. Flores, Microchem. J., 96, 4 (2010); doi:10.1016/j.microc.2009.12.016.
- B.K. Sharma, C.D. Sharma, S.D. Bhagat and S.Z. Erhan, Petrol. Sci. Technol., 25, 93 (2007); doi:10.1080/10916460601054230.
- M. Bahram and P. Kobra, Chem. Res. Chin. Univ., 27, 807 (2012).
- S. Wang, X. Xu, J. Yang and J. Gao, Fuel Process. Technol., 92, 486 (2011); doi:10.1016/j.fuproc.2010.11.001.
- J.G. Reynols, Prep. Pap-Am, Chem. Soc. Div. Fuel Chem., 49, 79 (2004).
- D.H. Freeman and T.C. O'Haver, Energy Fuels, 4, 688 (1990); doi:10.1021/ef00024a012.
- E.G. Ferrer and E.J. Baran, J. Electron Spectrosc., 57, 189 (1991); doi:10.1016/0368-2048(91)85022-L.
- W. Fu-Sheng, Talanta, 28, 189 (1981); doi:10.1016/0039-9140(81)80011-2.
- S.L. Ferreira, A.C. Costa and D.S. de Jesus, Talanta, 43, 1649 (1996); doi:10.1016/0039-9140(96)01919-4.
- J.M. Kim and R. Ryoo, Chem. Commun., 259 (1998); doi:10.1039/a707677k.
- D. Zhao, C. Yu and H. Yang, Encyclopedia of Nanoscience and Nanotechnology, Volume X, American Scientific Publishers, 12, 1 (2003).
References
M.F. Ali and S. Abbas, Fuel Process. Technol., 87, 573 (2006); doi:10.1016/j.fuproc.2006.03.001.
J.S.F. Pereira, D.P. Moraes, F.C. Antes, L.O. Diehl, M.F.P. Santos, R.C.L. Guimaraes, T.C.O. Fonseca, V.L. Dressler and E.M.M. Flores, Microchem. J., 96, 4 (2010); doi:10.1016/j.microc.2009.12.016.
B.K. Sharma, C.D. Sharma, S.D. Bhagat and S.Z. Erhan, Petrol. Sci. Technol., 25, 93 (2007); doi:10.1080/10916460601054230.
M. Bahram and P. Kobra, Chem. Res. Chin. Univ., 27, 807 (2012).
S. Wang, X. Xu, J. Yang and J. Gao, Fuel Process. Technol., 92, 486 (2011); doi:10.1016/j.fuproc.2010.11.001.
J.G. Reynols, Prep. Pap-Am, Chem. Soc. Div. Fuel Chem., 49, 79 (2004).
D.H. Freeman and T.C. O'Haver, Energy Fuels, 4, 688 (1990); doi:10.1021/ef00024a012.
E.G. Ferrer and E.J. Baran, J. Electron Spectrosc., 57, 189 (1991); doi:10.1016/0368-2048(91)85022-L.
W. Fu-Sheng, Talanta, 28, 189 (1981); doi:10.1016/0039-9140(81)80011-2.
S.L. Ferreira, A.C. Costa and D.S. de Jesus, Talanta, 43, 1649 (1996); doi:10.1016/0039-9140(96)01919-4.
J.M. Kim and R. Ryoo, Chem. Commun., 259 (1998); doi:10.1039/a707677k.
D. Zhao, C. Yu and H. Yang, Encyclopedia of Nanoscience and Nanotechnology, Volume X, American Scientific Publishers, 12, 1 (2003).