Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Membraneless Microfluidic Fuel Cell with Silver Electrode Fabricated by Low Temperature Co-fired Ceramic Combined with Photolithography
Corresponding Author(s) : Young Joon Yoon
Asian Journal of Chemistry,
Vol. 27 No. 11 (2015): Vol 27 Issue 11
Abstract
A microfluidic fuel cell fabricated by low temperature co-fired ceramic process was introduced. It was an alkaline fuel cell and produced the electric power via electrochemical reaction using a diverse fuel and an oxidant solution. Highly conductive silver was used for an electrode as a less expensive and non-precious metal catalyst. The fuel is 1 M KOH and the oxidant is 1 M H2SO4 without any electrolytes. In particular, by adding oxygen into the both of solutions by bubbling system, a higher open circuit potential was observed compared to that of normal condition. To enhance the efficiency of potential voltage of single-channel fuel cell, a noble design for dual-channel was employed in a microfluidic fuel cell. After optimizing the flow rates of fuel and oxidant, the open circuit potentials of single-channel and dual-channel microfluidic fuel cell were about 0.25 V and 0.65 V, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Kjeang, R. Michel, D.A. Harrington, N. Djilali and D. Sinton, J. Am. Chem. Soc., 130, 4000 (2008); doi:10.1021/ja078248c.
- J.L. Cohen, D.A. Westly, A. Pechenik and H.D. Abruña, J. Power Sources, 139, 96 (2005); doi:10.1016/j.jpowsour.2004.06.072.
- M. Chang, F. Chen and N. Fang, J. Power Sources, 159, 810 (2006); doi:10.1016/j.jpowsour.2005.11.066.
- J.L. Cohen, D.J. Volpe, D.A. Westly, A. Pechenik and H.D. Abruña, Langmuir, 21, 3544 (2005); doi:10.1021/la0479307.
- M.H. Sun, G. Velve Casquillas, S.S. Guo, J. Shi, H. Ji, Q. Ouyang and Y. Chen, Microelectron. Eng., 84, 1182 (2007); doi:10.1016/j.mee.2007.01.175.
- E. Kjeang, R. Michel, D.A. Harrington, D. Sinton and N. Djilali, Electrochim. Acta, 54, 698 (2008); doi:10.1016/j.electacta.2008.07.009.
- B. Ho and E. Kjeang, Central Eur. J. Eng., 1, 123 (2011); doi:10.2478/s13531-011-0012-y.
- N. Wagner, M. Schulze and E. Gülzow, J. Power Sources, 127, 264 (2004); doi:10.1016/j.jpowsour.2003.09.022.
- M. Goulet and E. Kjeang, J. Power Sources, 260, 186 (2014); doi:10.1016/j.jpowsour.2014.03.009.
- W. Sunga and J. Choi, Earth Space Rev., 4, 21 (1995).
References
E. Kjeang, R. Michel, D.A. Harrington, N. Djilali and D. Sinton, J. Am. Chem. Soc., 130, 4000 (2008); doi:10.1021/ja078248c.
J.L. Cohen, D.A. Westly, A. Pechenik and H.D. Abruña, J. Power Sources, 139, 96 (2005); doi:10.1016/j.jpowsour.2004.06.072.
M. Chang, F. Chen and N. Fang, J. Power Sources, 159, 810 (2006); doi:10.1016/j.jpowsour.2005.11.066.
J.L. Cohen, D.J. Volpe, D.A. Westly, A. Pechenik and H.D. Abruña, Langmuir, 21, 3544 (2005); doi:10.1021/la0479307.
M.H. Sun, G. Velve Casquillas, S.S. Guo, J. Shi, H. Ji, Q. Ouyang and Y. Chen, Microelectron. Eng., 84, 1182 (2007); doi:10.1016/j.mee.2007.01.175.
E. Kjeang, R. Michel, D.A. Harrington, D. Sinton and N. Djilali, Electrochim. Acta, 54, 698 (2008); doi:10.1016/j.electacta.2008.07.009.
B. Ho and E. Kjeang, Central Eur. J. Eng., 1, 123 (2011); doi:10.2478/s13531-011-0012-y.
N. Wagner, M. Schulze and E. Gülzow, J. Power Sources, 127, 264 (2004); doi:10.1016/j.jpowsour.2003.09.022.
M. Goulet and E. Kjeang, J. Power Sources, 260, 186 (2014); doi:10.1016/j.jpowsour.2014.03.009.
W. Sunga and J. Choi, Earth Space Rev., 4, 21 (1995).