Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Graphitization of Mixture Precursor with Pitch and Resin by Thermal-Mechanical Blending
Corresponding Author(s) : Kwang-Youn Cho
Asian Journal of Chemistry,
Vol. 27 No. 11 (2015): Vol 27 Issue 11
Abstract
Successful blending of pitch and phenol resin is introduced by applying thermal-mechanical stirring during melting of pitch and resin. The method of mixing of pitch and resin on impregnation into carbon fiber carbon matrix has not been reported so far. After graphitization at 2500 °C in inert atmosphere, as a promising result, graphite with over 72 % graphitization could be obtained on resin content 70 % above and the oxidation starting temperature was remarkably decreased. This it thought to promote an effective thermal-mechanical blending of pitch and resin, which are normally difficult to mix, while raising the oxidation temperature (i.e., slowing the oxidation rate) by changing the graphite crystalinity. The origin of the improvement is discussed on the basis of several analytical results including FE-SEM, TG and XRD.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.S. Sreejith, R. Krishnamurthy, K. Narayanasamy and S.K. Malhotra, J. Mater. Process. Technol., 88, 43 (1999); doi:10.1016/S0924-0136(98)00377-X.
- H. Li, H. Li, J. Lu, X. Zhang and K. Li, Carbon, 49, 1416 (2011); doi:10.1016/j.carbon.2010.12.009.
- H.J. Jung, Y.J. Chung, D.W. Cho and Y.S. Lim, J. Korea Ceram. Soc., 34, 963 (1997).
- J.J. Fernández, A. Figueiras, M. Granda, J. Bermejo and R. Menéndez, Carbon, 33, 295 (1995); doi:10.1016/0008-6223(94)00130-R.
- S.M. Oh and Y.D. Park, Fuel, 78, 1859 (1999); doi:10.1016/S0016-2361(99)00093-9.
- S. Bonnamy, Carbon, 37, 1707 (1999); doi:10.1016/S0008-6223(99)00044-5.
- G. Bhatia, R.K. Aggarwal, S.S. Chari and G.C. Jain, Carbon, 15, 219 (1977); doi:10.1016/0008-6223(77)90003-3.
- G.M. Jenkins, K. Kawamura and L.L. Ban, Formation and Structure of Polymeric Carbons, Mathematical and Physical Sciences, Proceedings of the Royal Society of London, pp. 501-517 (1972).
- M. Shiraishi, Introduction to Carbon Materials, Revised Edition, Carbon Society of Japan, Tokyo, p. 33 (1984).
References
P.S. Sreejith, R. Krishnamurthy, K. Narayanasamy and S.K. Malhotra, J. Mater. Process. Technol., 88, 43 (1999); doi:10.1016/S0924-0136(98)00377-X.
H. Li, H. Li, J. Lu, X. Zhang and K. Li, Carbon, 49, 1416 (2011); doi:10.1016/j.carbon.2010.12.009.
H.J. Jung, Y.J. Chung, D.W. Cho and Y.S. Lim, J. Korea Ceram. Soc., 34, 963 (1997).
J.J. Fernández, A. Figueiras, M. Granda, J. Bermejo and R. Menéndez, Carbon, 33, 295 (1995); doi:10.1016/0008-6223(94)00130-R.
S.M. Oh and Y.D. Park, Fuel, 78, 1859 (1999); doi:10.1016/S0016-2361(99)00093-9.
S. Bonnamy, Carbon, 37, 1707 (1999); doi:10.1016/S0008-6223(99)00044-5.
G. Bhatia, R.K. Aggarwal, S.S. Chari and G.C. Jain, Carbon, 15, 219 (1977); doi:10.1016/0008-6223(77)90003-3.
G.M. Jenkins, K. Kawamura and L.L. Ban, Formation and Structure of Polymeric Carbons, Mathematical and Physical Sciences, Proceedings of the Royal Society of London, pp. 501-517 (1972).
M. Shiraishi, Introduction to Carbon Materials, Revised Edition, Carbon Society of Japan, Tokyo, p. 33 (1984).