Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Damage Evaluation of Aramid Fiber Reinforced Cement Composites by High Velocity Impact
Corresponding Author(s) : Gyuyong Kim
Asian Journal of Chemistry,
Vol. 27 No. 11 (2015): Vol 27 Issue 11
Abstract
The purpose of this study is to evaluate the impact resistance of aramid fiber reinforced cement composite through the impact test of high velocity projectile. The mechanical performance of aramid fiber reinforced cement composite depended on length, oiling agent of surface and volume ratio of fiber. This result affected the impact resistance of the aramid fiber reinforced cement composite. We identified that volume ratio of 1.5 % and oiling agent ratio of 1.2 % are suitable with regard to the fiber dispersion, the mechanical performance and the impact resistance of the aramid fiber reinforced cement composite. This means that matrix of the cement composite and interfacial properties of fiber vary depending on the oiling agent of surface and volume ratio of aramid fiber. Thereby the mechanical performance and impact resistance of cement composite can be improved.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Atou, Y. Sano, M. Katayama and S. Hayashi, Procedia Eng., 58, 348 (2013); doi:10.1016/j.proeng.2013.05.039.
- M. Beppu, K. Miwa, M. Itoh, M. Katayama and T. Ohno, Int. J. Impact Eng., 35, 1419 (2008); doi:10.1016/j.ijimpeng.2008.07.021.
- K.T. Soe, Y.X. Zhang and L.C. Zhang, Compos. Struct., 104, 320 (2013); doi:10.1016/j.compstruct.2013.01.029.
- F. Vossoughi, C.P. Ostertag, P.J.M. Monteiro and G.C. Johnson, Cement Concr. Res., 37, 96 (2007); doi:10.1016/j.cemconres.2006.09.003.
- M. Maalej, S.T. Quek and J. Zhang, J. Mater. Civ. Eng., 17, 143 (2005); doi:10.1061/(ASCE)0899-1561(2005)17:2(143).
- R. Yu, P. Spiesz and H.J.H. Brouwers, Construct. Build. Mater., 68, 158 (2014); doi:10.1016/j.conbuildmat.2014.06.033.
- Y. Farnam, S. Mohammadi and M. Shekarchi, Int. J. Impact Eng., 37, 220 (2010); doi:10.1016/j.ijimpeng.2009.08.006.
- K. Habel and P. Gauvreau, Cement Concr. Compos., 30, 938 (2008); doi:10.1016/j.cemconcomp.2008.09.001.
References
T. Atou, Y. Sano, M. Katayama and S. Hayashi, Procedia Eng., 58, 348 (2013); doi:10.1016/j.proeng.2013.05.039.
M. Beppu, K. Miwa, M. Itoh, M. Katayama and T. Ohno, Int. J. Impact Eng., 35, 1419 (2008); doi:10.1016/j.ijimpeng.2008.07.021.
K.T. Soe, Y.X. Zhang and L.C. Zhang, Compos. Struct., 104, 320 (2013); doi:10.1016/j.compstruct.2013.01.029.
F. Vossoughi, C.P. Ostertag, P.J.M. Monteiro and G.C. Johnson, Cement Concr. Res., 37, 96 (2007); doi:10.1016/j.cemconres.2006.09.003.
M. Maalej, S.T. Quek and J. Zhang, J. Mater. Civ. Eng., 17, 143 (2005); doi:10.1061/(ASCE)0899-1561(2005)17:2(143).
R. Yu, P. Spiesz and H.J.H. Brouwers, Construct. Build. Mater., 68, 158 (2014); doi:10.1016/j.conbuildmat.2014.06.033.
Y. Farnam, S. Mohammadi and M. Shekarchi, Int. J. Impact Eng., 37, 220 (2010); doi:10.1016/j.ijimpeng.2009.08.006.
K. Habel and P. Gauvreau, Cement Concr. Compos., 30, 938 (2008); doi:10.1016/j.cemconcomp.2008.09.001.