Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption of CO2 by 3-D Covalent-Organic Framework Materials
Corresponding Author(s) : Qinfang Zhang
Asian Journal of Chemistry,
Vol. 27 No. 11 (2015): Vol 27 Issue 11
Abstract
Grand canonical Monte Carlo (GCMC) simulations using standard force fields have been carried out to model the adsorption of CO2 gas on COF-1, COF-2 and COF-3. Our calculations indicate that the COF-3 material is the most prospective adsorbents for CO2. The results showed that the COF-3 with -NH2 and -CH2OCH2-(DHF) functionalized structures and found that the binding energy increases in the order of DHF_COF-3 < NH2_COF-3. This implied that COF-3 with tetrahydrofuran group is responsible to high adsorption of CO2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.M. White, D.H. Smith, K.L. Jones, A.L. Goodman, S.A. Jikich, R.B. LaCount, S.B. DuBose, E. Ozdemir, B.I. Morsi and K.T. Schroeder, Energy Fuels, 19, 659 (2005); doi:10.1021/ef040047w.
- D. Singh, E. Croiset, P.L. Douglas and M.A. Douglas, Energy Convers. Manage., 44, 3073 (2003); doi:10.1016/S0196-8904(03)00040-2.
- S. Sircar, T. Golden and M. Rao, Carbon, 34, 1 (1996); doi:10.1016/0008-6223(95)00128-X.
- S.U. Rege, R.T. Yang, K. Qian and M.A. Buzanowski, Chem. Eng. Sci., 56, 2745 (2001); doi:10.1016/S0009-2509(00)00531-5.
- S.B. Kayiran and F.L. Darkrim, Surf. Interface Anal., 34, 100 (2002); doi:10.1002/sia.1262.
- S. Ma and H.C. Zhou, Chem. Commun., 46, 44 (2010); doi:10.1039/B916295J.
- D. Sun, S. Ma, Y. Ke, D.J. Collins and H.C. Zhou, J. Am. Chem. Soc., 128, 3896 (2006); doi:10.1021/ja058777l.
- R.V. Siriwardane, M.S. Shen, E.P. Fisher and J.A. Poston, Energy Fuels, 15, 279 (2001); doi:10.1021/ef000241s.
- L. Huang, L. Zhang, Q. Shao, L. Lu, X. Lu, S. Jiang and W. Shen, J. Phys. Chem. C, 111, 11912 (2007); doi:10.1021/jp067226u.
- R. Babarao, S. Dai and D. Jiang, Langmuir, 27, 3451 (2011); doi:10.1021/la104827p.
- S.L. Mayo, B.D. Olafson and W.A. Goddard, J. Phys. Chem., 94, 8897 (1990); doi:10.1021/j100389a010.
- B. Delley, J. Chem. Phys., 92, 508 (1990); doi:10.1063/1.458452.
- B. Delley, J. Chem. Phys., 113, 7756 (2000); doi:10.1063/1.1316015.
References
C.M. White, D.H. Smith, K.L. Jones, A.L. Goodman, S.A. Jikich, R.B. LaCount, S.B. DuBose, E. Ozdemir, B.I. Morsi and K.T. Schroeder, Energy Fuels, 19, 659 (2005); doi:10.1021/ef040047w.
D. Singh, E. Croiset, P.L. Douglas and M.A. Douglas, Energy Convers. Manage., 44, 3073 (2003); doi:10.1016/S0196-8904(03)00040-2.
S. Sircar, T. Golden and M. Rao, Carbon, 34, 1 (1996); doi:10.1016/0008-6223(95)00128-X.
S.U. Rege, R.T. Yang, K. Qian and M.A. Buzanowski, Chem. Eng. Sci., 56, 2745 (2001); doi:10.1016/S0009-2509(00)00531-5.
S.B. Kayiran and F.L. Darkrim, Surf. Interface Anal., 34, 100 (2002); doi:10.1002/sia.1262.
S. Ma and H.C. Zhou, Chem. Commun., 46, 44 (2010); doi:10.1039/B916295J.
D. Sun, S. Ma, Y. Ke, D.J. Collins and H.C. Zhou, J. Am. Chem. Soc., 128, 3896 (2006); doi:10.1021/ja058777l.
R.V. Siriwardane, M.S. Shen, E.P. Fisher and J.A. Poston, Energy Fuels, 15, 279 (2001); doi:10.1021/ef000241s.
L. Huang, L. Zhang, Q. Shao, L. Lu, X. Lu, S. Jiang and W. Shen, J. Phys. Chem. C, 111, 11912 (2007); doi:10.1021/jp067226u.
R. Babarao, S. Dai and D. Jiang, Langmuir, 27, 3451 (2011); doi:10.1021/la104827p.
S.L. Mayo, B.D. Olafson and W.A. Goddard, J. Phys. Chem., 94, 8897 (1990); doi:10.1021/j100389a010.
B. Delley, J. Chem. Phys., 92, 508 (1990); doi:10.1063/1.458452.
B. Delley, J. Chem. Phys., 113, 7756 (2000); doi:10.1063/1.1316015.