Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Sonophotocatalytic Performance of Ag2Se-Graphene Hybrid Nanomaterials Synthesized by Hydrothermal Method
Corresponding Author(s) : Won-Chun Oh
Asian Journal of Chemistry,
Vol. 27 No. 11 (2015): Vol 27 Issue 11
Abstract
In this article, we report a novel Ag2Se-graphene nanocomposites synthesis via a facile hydrothermal method. The structural and physico-chemical properties of Ag2Se-graphene composite are further characterized by X-ray diffraction, scanning electron microscopy with an energy dispersive X-ray analysis. The sonophotocatalytic activity of Ag2Se-graphene was evaluated by measuring degradation of organic pollutants such as methylene blue, rhodamine B under visible light combined ultrasonic irradiation. The sonophotocatalytic degradation was analyzed using UV/visible spectrophotometer. The sonophotocatalysis was faster due to the more formation of reactive radicals as well as the increase of the active surface area of Ag2Se-graphene composites.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.D. Das and D. Karunakaran, Phys. Rev. B, 39, 10872 (1989); doi:10.1103/PhysRevB.39.10872.
- H.Q. Cao, Y.J. Xiao, Y.X. Lu, J.F. Yin, B.J. Li, S.S. Wu and X.M. Wu, Nano Res., 3, 863 (2010); doi:10.1007/s12274-010-0057-x.
- K. Haubner, J. Murawski, P. Olk, L.M. Eng, C. Ziegler, B. Adolphi and E. Jaehne, ChemPhysChem, 11, 2131 (2010); doi:10.1002/cphc.201000132.
- F. Lupo, R. Kamalakaran, C. Scheu, N. Grobert and M. Rühle, Carbon, 42, 1995 (2004); doi:10.1016/j.carbon.2004.03.037.
- X.Y. Zhang, H.P. Li, X.L. Cui and Y.H. Lin, J. Mater. Chem., 20, 2801 (2010); doi:10.1039/b917240h.
- A.Z. Abdullah and P.Y. Ling, J. Hazard. Mater., 173, 159 (2010); doi:10.1016/j.jhazmat.2009.08.060.
- N.H. Ince and G. Tezcanli-Güyer, Ultrasonics, 42, 591 (2004); doi:10.1016/j.ultras.2004.01.097.
- G.A. Tai and W.L. Guo, Ultrason. Sonochem., 15, 350 (2008); doi:10.1016/j.ultsonch.2007.08.008.
- Z.D. Meng, L. Zhu and W.C. Oh, J. Ind. Eng. Chem., 18, 2004 (2012); doi:10.1016/j.jiec.2012.05.019.
References
V.D. Das and D. Karunakaran, Phys. Rev. B, 39, 10872 (1989); doi:10.1103/PhysRevB.39.10872.
H.Q. Cao, Y.J. Xiao, Y.X. Lu, J.F. Yin, B.J. Li, S.S. Wu and X.M. Wu, Nano Res., 3, 863 (2010); doi:10.1007/s12274-010-0057-x.
K. Haubner, J. Murawski, P. Olk, L.M. Eng, C. Ziegler, B. Adolphi and E. Jaehne, ChemPhysChem, 11, 2131 (2010); doi:10.1002/cphc.201000132.
F. Lupo, R. Kamalakaran, C. Scheu, N. Grobert and M. Rühle, Carbon, 42, 1995 (2004); doi:10.1016/j.carbon.2004.03.037.
X.Y. Zhang, H.P. Li, X.L. Cui and Y.H. Lin, J. Mater. Chem., 20, 2801 (2010); doi:10.1039/b917240h.
A.Z. Abdullah and P.Y. Ling, J. Hazard. Mater., 173, 159 (2010); doi:10.1016/j.jhazmat.2009.08.060.
N.H. Ince and G. Tezcanli-Güyer, Ultrasonics, 42, 591 (2004); doi:10.1016/j.ultras.2004.01.097.
G.A. Tai and W.L. Guo, Ultrason. Sonochem., 15, 350 (2008); doi:10.1016/j.ultsonch.2007.08.008.
Z.D. Meng, L. Zhu and W.C. Oh, J. Ind. Eng. Chem., 18, 2004 (2012); doi:10.1016/j.jiec.2012.05.019.