Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetics of Oxidation of Atropine by Alkaline KMnO4 in Aqueous Solutions
Corresponding Author(s) : Abdullah I. Saleh
Asian Journal of Chemistry,
Vol. 27 No. 10 (2015): Vol 27 Issue 10
Abstract
Kinetics of oxidation of atropine by alkaline KMnO4 has been studied in aqueous solutions at various temperatures. Kinetic measurements were performed at constant pH and constant ionic strength, under pseudo-first order condition in which the concentration of atropine was around an order of magnitude greater than that of KMnO4. The observed rate constant was obtained by following the change in absorbance of the reaction mixture with time at a predetermined wavelength. The overall rate constant and the orders of the reaction with respect to concentrations of both atropine and KMnO4 were determined. Two observed rates and hence, two rates constant were found. This indicates that the oxidation process occurs in two steps with the formation of intermediates. A suggested mechanism for the reaction is given which agrees with kinetics results. The activation energy of the process was convoluted from temperature effect on the rate of the reaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- WHO Model List of Essential Medicines, World Health Organization, October 2013:6. Retrieved 22 April 2014. http://www.who.int/medicines/publications/essentialmedicines/en/.
- H.P. Rang, M.M. Dale, J.M. Ritter, R.J. Flower and G. Henderson, Pharmacology, Elsevier, NY, p. 139 (2003).
- J.M. Field, M.F. Hazinski, M.R. Sayre, L. Chameides, S.M. Schexnayder, R. Hemphill, R.A. Samson, J. Kattwinkel, R.A. Berg, F. Bhanji, D.M. Cave, E.C. Jauch, P.J. Kudenchuk, R.W. Neumar, M.A. Peberdy, J.M. Perlman, E. Sinz, A.H. Travers, M.D. Berg, J.E. Billi, B. Eigel, R.W. Hickey, M.E. Kleinman, M.S. Link, L.J. Morrison, R.E. O’Connor, M. Shuster, C.W. Callaway, B. Cucchiara, J.D. Ferguson, T.D. Rea and T.L. Van denHoek, Circulation, 122, S640 (2010); doi:10.1161/CIRCULATIONAHA.110.970889.
- A. da Silva Gonçalves, T.C.C. França, M.S. Caetano and T.C. Ramalho, J. Biomol. Struct. Dyn., 32, 301 (2014); doi:10.1080/07391102.2013.765361.
- J.J. Walline, K. Lindsley, S.S. Vedula, S.A. Cotter, D.O. Mutti and J.D. Twelker, Cochrane Database Syst. Rev., 12, CD004916 (2011).
- Z. Georgievski, K. Koklanis and J. Leone, Clin. Experiment. Ophthalmol., 36(Suppl 2), A764 (2008).
- P.M. Dewick, Medicinal Natural Products: A Biosynthetic Approach, John Wiley & Sons: Chichester, ISBN 978-0470741672 (2009).
- K.S. Byadagi, R.V. Hosahalli, S.T. Nandibewoor and S.A. Chimatadar, Kinet. Catal., 53, 65 (2012); doi:10.1134/S0023158411060085.
- K.S. Byadagi, S.T. Nandibewoor and S.A. Chimatadar, Acta Chim. Slov., 60, 617 (2013).
- A. Kumar, P. Kumar and P. Ramamurthy, Polyhedron, 18, 773 (1999); doi:10.1016/S0277-5387(98)00352-0.
- R.S. Shettar and S.T. Nandibewoor, J. Mol. Catal. Chem., 234, 137 (2005); doi:10.1016/j.molcata.2005.02.026.
- S. Dash, S. Patel and B.K. Mishra, Tetrahedron, 65, 707 (2009); doi:10.1016/j.tet.2008.10.038.
- M. Sanjana, A.K. Patnaik, S.K. Badamali and P. Mohanty, J. Chem., Article ID 724505 (2013); doi:10.1155/2013/724505.
- H.K. Okoro and E.O. Odebunmi, Int. J. Phys. Sci., 4, 471 (2009).
- W. Lund, T. Waaler, V. Meisalo and P. Kelly, Acta Chem. Scand., 22, 3085 (1968); doi:10.3891/acta.chem.scand.22-3085.
- F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, John Wiley & Sons, New York, NY, p. 747 (1980).
- H.M. Abdel-Halim, A.S. Abu-Surrah and H.M. Baker, Jordan J. Chem., 7, 33 (2012).
- H.M.Abdel-Halim, A.S.Abu-Surrah and H.M.Baker, Z. Anorg. Allg. Chem., 636, 872 (2010); doi:10.1002/zaac.200900480.
- H.M. Abdel-Halim, A.S. Abu-Surrah and H.M. Baker, Z. Naturforschung, 61b, 1346 (2006).
- H.M. Abdel-Halim, A.S. Abu-Surrah and S.E. Qaqish, Asian J. Chem., 18, 947 (2006).
- D. Mohajer and S. Tangestaninejad, Tetrahedron Lett., 35, 945 (1994); doi:10.1016/S0040-4039(00)76007-2.
- M. Meti, S.T. Nandibewoor and S.A. Chimatadar, Turk. J. Chem., 38, 477 (2014); doi:10.3906/kim-1307-4.
- S. Pratihar, Org. Biomol. Chem., 12, 5781 (2014); doi:10.1039/C4OB00555D.
- L.S. Levitt and E.R. Malinowski, J. Am. Chem. Soc., 77, 4517 (1955); doi:10.1021/ja01622a022.
- K.B. Wiberg and R. Stewart, J. Am. Chem. Soc., 77, 1786 (1955); doi:10.1021/ja01612a020.
- R.M. Mulla, G.C. Hiremath and S.T. Nandibewoor, J. Chem. Sci., 117, 33 (2005); doi:10.1007/BF02704359.
- W.A. Mosher and D.M. Preiss, J. Am. Chem. Soc., 75, 5605 (1953); doi:10.1021/ja01118a038.
- P.D. Pol, R.T. Mahesh and S.T. Nandibewoor, J. Chem. Res., 533 (2002); doi:10.3184/030823402103170899.
References
WHO Model List of Essential Medicines, World Health Organization, October 2013:6. Retrieved 22 April 2014. http://www.who.int/medicines/publications/essentialmedicines/en/.
H.P. Rang, M.M. Dale, J.M. Ritter, R.J. Flower and G. Henderson, Pharmacology, Elsevier, NY, p. 139 (2003).
J.M. Field, M.F. Hazinski, M.R. Sayre, L. Chameides, S.M. Schexnayder, R. Hemphill, R.A. Samson, J. Kattwinkel, R.A. Berg, F. Bhanji, D.M. Cave, E.C. Jauch, P.J. Kudenchuk, R.W. Neumar, M.A. Peberdy, J.M. Perlman, E. Sinz, A.H. Travers, M.D. Berg, J.E. Billi, B. Eigel, R.W. Hickey, M.E. Kleinman, M.S. Link, L.J. Morrison, R.E. O’Connor, M. Shuster, C.W. Callaway, B. Cucchiara, J.D. Ferguson, T.D. Rea and T.L. Van denHoek, Circulation, 122, S640 (2010); doi:10.1161/CIRCULATIONAHA.110.970889.
A. da Silva Gonçalves, T.C.C. França, M.S. Caetano and T.C. Ramalho, J. Biomol. Struct. Dyn., 32, 301 (2014); doi:10.1080/07391102.2013.765361.
J.J. Walline, K. Lindsley, S.S. Vedula, S.A. Cotter, D.O. Mutti and J.D. Twelker, Cochrane Database Syst. Rev., 12, CD004916 (2011).
Z. Georgievski, K. Koklanis and J. Leone, Clin. Experiment. Ophthalmol., 36(Suppl 2), A764 (2008).
P.M. Dewick, Medicinal Natural Products: A Biosynthetic Approach, John Wiley & Sons: Chichester, ISBN 978-0470741672 (2009).
K.S. Byadagi, R.V. Hosahalli, S.T. Nandibewoor and S.A. Chimatadar, Kinet. Catal., 53, 65 (2012); doi:10.1134/S0023158411060085.
K.S. Byadagi, S.T. Nandibewoor and S.A. Chimatadar, Acta Chim. Slov., 60, 617 (2013).
A. Kumar, P. Kumar and P. Ramamurthy, Polyhedron, 18, 773 (1999); doi:10.1016/S0277-5387(98)00352-0.
R.S. Shettar and S.T. Nandibewoor, J. Mol. Catal. Chem., 234, 137 (2005); doi:10.1016/j.molcata.2005.02.026.
S. Dash, S. Patel and B.K. Mishra, Tetrahedron, 65, 707 (2009); doi:10.1016/j.tet.2008.10.038.
M. Sanjana, A.K. Patnaik, S.K. Badamali and P. Mohanty, J. Chem., Article ID 724505 (2013); doi:10.1155/2013/724505.
H.K. Okoro and E.O. Odebunmi, Int. J. Phys. Sci., 4, 471 (2009).
W. Lund, T. Waaler, V. Meisalo and P. Kelly, Acta Chem. Scand., 22, 3085 (1968); doi:10.3891/acta.chem.scand.22-3085.
F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, John Wiley & Sons, New York, NY, p. 747 (1980).
H.M. Abdel-Halim, A.S. Abu-Surrah and H.M. Baker, Jordan J. Chem., 7, 33 (2012).
H.M.Abdel-Halim, A.S.Abu-Surrah and H.M.Baker, Z. Anorg. Allg. Chem., 636, 872 (2010); doi:10.1002/zaac.200900480.
H.M. Abdel-Halim, A.S. Abu-Surrah and H.M. Baker, Z. Naturforschung, 61b, 1346 (2006).
H.M. Abdel-Halim, A.S. Abu-Surrah and S.E. Qaqish, Asian J. Chem., 18, 947 (2006).
D. Mohajer and S. Tangestaninejad, Tetrahedron Lett., 35, 945 (1994); doi:10.1016/S0040-4039(00)76007-2.
M. Meti, S.T. Nandibewoor and S.A. Chimatadar, Turk. J. Chem., 38, 477 (2014); doi:10.3906/kim-1307-4.
S. Pratihar, Org. Biomol. Chem., 12, 5781 (2014); doi:10.1039/C4OB00555D.
L.S. Levitt and E.R. Malinowski, J. Am. Chem. Soc., 77, 4517 (1955); doi:10.1021/ja01622a022.
K.B. Wiberg and R. Stewart, J. Am. Chem. Soc., 77, 1786 (1955); doi:10.1021/ja01612a020.
R.M. Mulla, G.C. Hiremath and S.T. Nandibewoor, J. Chem. Sci., 117, 33 (2005); doi:10.1007/BF02704359.
W.A. Mosher and D.M. Preiss, J. Am. Chem. Soc., 75, 5605 (1953); doi:10.1021/ja01118a038.
P.D. Pol, R.T. Mahesh and S.T. Nandibewoor, J. Chem. Res., 533 (2002); doi:10.3184/030823402103170899.