Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Mechanism of Oxidation of L-Cysteine by Tetraoxoiodate(VII) in Aqueous Acid Medium
Corresponding Author(s) : Oguejiofo T. Ujam
Asian Journal of Chemistry,
Vol. 27 No. 10 (2015): Vol 27 Issue 10
Abstract
The kinetics and mechanism of the oxidation of L-cysteine by tetraoxoiodate(VII) ion in aqueous acid medium has been studied at 0.03 £ [H+] £ 0.1 mol dm-3 under pseudo-first order conditions of an excess of tetraoxoiodate(VII) concentration at 1 = 0.11 mol dm-3 (NaClO4). The reaction obeys the rate expression:
-d [IO4–]/dt = {k3K1K2[H+] + k5} [RSH][IO4–]
Addition of AcO– and NO3– had no effect on the reaction but the rate of reaction decreased with increase in ionic strength of the medium. Increase in dielectric constant decreased the rate of reaction. The rates are consistent with a mechanism which involves the formation of free radicals which subsequently dimerized into disulfides. The reaction has been rationalized on the basis of the inner-sphere electron transfer mechanism.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Piste, Int. Pharm. Chem. Biol. Sci., 3, 143 (2013).
- A. Galano and J.R. Alvarez-Idaboy, RSC Adv., 1, 1763 (2011); doi:10.1039/c1ra00474c.
- A.C. Chan, Can. J. Physiol. Pharmacol., 71, 725 (1993); doi:10.1139/y93-109.
- V. Shetty, D.S. Spellman and T.A. Neubert, J. Am. Soc. Mass Spectrom., 18, 1544 (2007); doi:10.1016/j.jasms.2007.05.013.
- B. Sharma, S. Singh and N.J. Siddiqi, BioMed Res. Int., Article ID 640754 (2014); doi:10.1155/2014/640754.
- S. Mandal, G. Das and H. Askari, Struct. Chem., 25, 43 (2014); doi:10.1007/s11224-013-0248-7.
- M. Ranjbar, N. Shahsavan and M. Yousefi, Am. Chem. Sci. J., 2, 111 (2012); doi:10.9734/ACSJ/2012/1617.
- F.J. Pereira, M.D. Vázquez, L. Debán and A.J. Aller, Polyhedron, 76, 71 (2014); doi:10.1016/j.poly.2014.03.036.
- N.M. Giles, A.B. Watts, G.I. Giles, F.H. Fry, J.A. Littlechild and C. Jacob, Chem. Biol., 10, 677 (2003); doi:10.1016/S1074-5521(03)00174-1.
- S.J.S. Flora, Oxid. Med. Cell. Longev., 2, 191 (2009); doi:10.4161/oxim.2.4.9112.
- N.M. Giles, G.I. Giles and C. Jacob, Biochem. Biophys. Res. Commun., 300, 1 (2003); doi:10.1016/S0006-291X(02)02770-5.
- C. Jacob, G.I. Giles, N.M. Giles and H. Sies, Angew. Chem. Int. Ed. Engl., 42, 4742 (2003); doi:10.1002/anie.200300573.
- H.M. Abdel-Halim, A.S. Abu-Surrah and H.M. Baker, Jordan J. Chem., 7, 33 (2012).
- I. Warad, M. Al-Nuri, M. AbuEid, Z. Al-Othman, S. Al-Resayes and N. Diab, E-J. Chem., 7, S527 (2010); doi:10.1155/2010/659749.
- H.M. Abdel-Halim, A.S. Abu-Surrah and H.M. Baker, Z. Anorg. Allg. Chem., 636, 872 (2010); doi:10.1002/zaac.200900480.
- G.A. Ayoko and M.A. Olatunji, Inorg. Chim. Acta, 80, L15 (1983); doi:10.1016/S0020-1693(00)91233-7.
- G.A. Ayoko and M.A. Olatunji, Polyhedron, 2, 577 (1983); doi:10.1016/S0277-5387(00)81513-2.
- J.F. Iyun, K.Y. Musa and G.A. Ayoko, Indian J. Chem., 35A, 210 (1996).
- D.W.J. Kwong and D.E. Penington, Inorg. Chem., 23, 2528 (1984); doi:10.1021/ic00184a030.
- D.A. Dixon, T.P. Dasgupta and N.P. Sadler, J. Chem. Soc., Dalton Trans., 2267 (1995); doi:10.1039/dt9950002267.
- J.M. Walshe, Chem. Scr., 20, 461 (1964).
- J.P. Sugiura, Y. Hojo and H. Tanaka, Chem. Pharm. Bull. (Tokyo), 20, 1362 (1972); doi:10.1248/cpb.20.1362.
- H.M. Lawal and J.F. Iyun, Indian J. Chem., 37A, 155 (1998).
- A. McAuley and U.D. Gomwalk, J. Chem. Soc. A, 977 (1969); doi:10.1039/j19690000977.
- U.D. Gomwalk and A. McAuley, J. Chem. Soc. A, 2948 (1968); doi:10.1039/j19680002948.
- R.N. Haszeldine, J. Chem. Soc., 584 (1951); doi:10.1039/JR9510000584.
- H.A. Benesi and J.H. Hildebrand, J. Am. Chem. Soc., 71, 2703 (1949); doi:10.1021/ja01176a030.
- F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, Advanced Inorganic Chemistry, John Wiley & Sons, Boston, edn 6 (1999).
- F. Haurowitz, Chemistry & Functions of Protien, Academic Press, New York, edn 2 (1963).
- G.W. Castellan, Physical Chemistry, Addision-Wesley Pub. Co. Mass (1981).
- R.G. Wilkin, Kinetics and Mechanism of Reactions of Transition Metal Complexes, VCR Publishers, Inc., New York, 2002.
- L. Wang, I.N. Odeh and D.W. Margerum, Inorg. Chem., 43, 7545 (2004); doi:10.1021/ic048809q.
- A.A. Abdel-khalek, Polyhedron, 8, 51 (1989); doi:10.1016/S0277-5387(00)86378-0.
- D.J.B. Galliford and J.M. Ottaway, Analyst, 97, 412 (1972); doi:10.1039/an9729700412.
References
P. Piste, Int. Pharm. Chem. Biol. Sci., 3, 143 (2013).
A. Galano and J.R. Alvarez-Idaboy, RSC Adv., 1, 1763 (2011); doi:10.1039/c1ra00474c.
A.C. Chan, Can. J. Physiol. Pharmacol., 71, 725 (1993); doi:10.1139/y93-109.
V. Shetty, D.S. Spellman and T.A. Neubert, J. Am. Soc. Mass Spectrom., 18, 1544 (2007); doi:10.1016/j.jasms.2007.05.013.
B. Sharma, S. Singh and N.J. Siddiqi, BioMed Res. Int., Article ID 640754 (2014); doi:10.1155/2014/640754.
S. Mandal, G. Das and H. Askari, Struct. Chem., 25, 43 (2014); doi:10.1007/s11224-013-0248-7.
M. Ranjbar, N. Shahsavan and M. Yousefi, Am. Chem. Sci. J., 2, 111 (2012); doi:10.9734/ACSJ/2012/1617.
F.J. Pereira, M.D. Vázquez, L. Debán and A.J. Aller, Polyhedron, 76, 71 (2014); doi:10.1016/j.poly.2014.03.036.
N.M. Giles, A.B. Watts, G.I. Giles, F.H. Fry, J.A. Littlechild and C. Jacob, Chem. Biol., 10, 677 (2003); doi:10.1016/S1074-5521(03)00174-1.
S.J.S. Flora, Oxid. Med. Cell. Longev., 2, 191 (2009); doi:10.4161/oxim.2.4.9112.
N.M. Giles, G.I. Giles and C. Jacob, Biochem. Biophys. Res. Commun., 300, 1 (2003); doi:10.1016/S0006-291X(02)02770-5.
C. Jacob, G.I. Giles, N.M. Giles and H. Sies, Angew. Chem. Int. Ed. Engl., 42, 4742 (2003); doi:10.1002/anie.200300573.
H.M. Abdel-Halim, A.S. Abu-Surrah and H.M. Baker, Jordan J. Chem., 7, 33 (2012).
I. Warad, M. Al-Nuri, M. AbuEid, Z. Al-Othman, S. Al-Resayes and N. Diab, E-J. Chem., 7, S527 (2010); doi:10.1155/2010/659749.
H.M. Abdel-Halim, A.S. Abu-Surrah and H.M. Baker, Z. Anorg. Allg. Chem., 636, 872 (2010); doi:10.1002/zaac.200900480.
G.A. Ayoko and M.A. Olatunji, Inorg. Chim. Acta, 80, L15 (1983); doi:10.1016/S0020-1693(00)91233-7.
G.A. Ayoko and M.A. Olatunji, Polyhedron, 2, 577 (1983); doi:10.1016/S0277-5387(00)81513-2.
J.F. Iyun, K.Y. Musa and G.A. Ayoko, Indian J. Chem., 35A, 210 (1996).
D.W.J. Kwong and D.E. Penington, Inorg. Chem., 23, 2528 (1984); doi:10.1021/ic00184a030.
D.A. Dixon, T.P. Dasgupta and N.P. Sadler, J. Chem. Soc., Dalton Trans., 2267 (1995); doi:10.1039/dt9950002267.
J.M. Walshe, Chem. Scr., 20, 461 (1964).
J.P. Sugiura, Y. Hojo and H. Tanaka, Chem. Pharm. Bull. (Tokyo), 20, 1362 (1972); doi:10.1248/cpb.20.1362.
H.M. Lawal and J.F. Iyun, Indian J. Chem., 37A, 155 (1998).
A. McAuley and U.D. Gomwalk, J. Chem. Soc. A, 977 (1969); doi:10.1039/j19690000977.
U.D. Gomwalk and A. McAuley, J. Chem. Soc. A, 2948 (1968); doi:10.1039/j19680002948.
R.N. Haszeldine, J. Chem. Soc., 584 (1951); doi:10.1039/JR9510000584.
H.A. Benesi and J.H. Hildebrand, J. Am. Chem. Soc., 71, 2703 (1949); doi:10.1021/ja01176a030.
F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, Advanced Inorganic Chemistry, John Wiley & Sons, Boston, edn 6 (1999).
F. Haurowitz, Chemistry & Functions of Protien, Academic Press, New York, edn 2 (1963).
G.W. Castellan, Physical Chemistry, Addision-Wesley Pub. Co. Mass (1981).
R.G. Wilkin, Kinetics and Mechanism of Reactions of Transition Metal Complexes, VCR Publishers, Inc., New York, 2002.
L. Wang, I.N. Odeh and D.W. Margerum, Inorg. Chem., 43, 7545 (2004); doi:10.1021/ic048809q.
A.A. Abdel-khalek, Polyhedron, 8, 51 (1989); doi:10.1016/S0277-5387(00)86378-0.
D.J.B. Galliford and J.M. Ottaway, Analyst, 97, 412 (1972); doi:10.1039/an9729700412.