Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synergistic Flame Retardancy of Polyaminocyclotriphosphazene and 1,3,5-Tris(2-hydroxyethyl)cyanurate in Polyethylene
Asian Journal of Chemistry,
Vol. 27 No. 10 (2015): Vol 27 Issue 10
Abstract
In this paper, the synergistic flame retardancy of polyaminocyclotriphosphazene (PHACTPA) and 1,3,5-tris(2-hydroxyethyl)cyanurate (THEIC) in polyethylene (PE) was studied by limiting oxygen index (LOI) measurement, vertical burning test and cone calorimetry test. Meanwhile, the thermal stability of flame-retarded polyethylene (FR-PE) was investigated by thermogravimetric analysis and the mechanism was discussed by the analysis of residues obtained in cone calorimetric test. The experimental results reveal that there is an excellent synergistic flame retardancy between PHACTPA and THEIC in polyethylene, which results in the increased limiting oxygen index, improved vertical burning class, reduced peak heat release rate (PHRR), mean heat release rate (MHRR), slowed mass loss in polyethylene during combustion. For example, FR-PE alone with 20 wt. % PHACTPA or THEIC based on the total weight has the limiting oxygen index of 24.4 and 17.4 % respectively and the vertical burning test is failed, while FR-PE with 20 wt. % the combination consisted of 50 wt. % PHACTPA and 50 wt. % THEIC has the 25.4 % of limiting oxygen index and passes UL94 V-0 classification. Thermogravimetric analysis results indicate that PHACTPA or PHACTPA/THEIC improves the thermal stability of polyethylene. The analysis of residues reveals that PHACTPA plays flame retardancy mainly by condensed phase mechanism, where PHACTPA is decomposed into non-volatile phosphoric acid compounds which promote the charring of polyethylene, the formed intumescent layer results in flame retardancy by the barrier effect on heat, air and decomposition products. 1,3,5-Tris(2-hydroxyethyl)cyanurate promotes the decomposition of PHACTPA to phosphoric acid compounds, so improves the charring of polyethylene and results in excellent synergistic flame retardantcy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.E. Zaikov and S.M. Lomakin, J. Appl. Polym. Sci., 86, 2449 (2002); doi:10.1002/app.10946.
- A.B. Morgan and J.W. Gilman, Fire Mater., 37, 259 (2013); doi:10.1002/fam.2128.
- M. Alaee, Environ. Int., 29, 683 (2003); doi:10.1016/S0160-4120(03)00121-1.
- C.H. Xu, W.S. Wang, Y.K. Chen, N. Zeng, H. He, D.M. Jia and, J. South China Univ. Technol. Nat. Sci., 40, 32 (2007).
- W. Peukert, K. Higashitani and R. Marczak, Adv. Powder Technol., 21, 1 (2010); doi:10.1016/j.apt.2009.12.012.
- K. Wu, Z.Z. Wang and H.J. Liang, Polym. Compos., 29, 854 (2008); doi:10.1002/pc.20459.
- Q. Wu, J. Lv and B. Qu, Polym. Int., 52, 1326 (2003); doi:10.1002/pi.1115.
- X.L. Chen, J. Yu, M. He, S. Guo, Z. Luo and S. Lu, J. Polym. Res., 16, 357 (2009); doi:10.1007/s10965-008-9236-9.
- S. Kim, J. Polym. Sci. B, Polym. Phys., 41, 936 (2003); doi:10.1002/polb.10453.
- Y.J. Kwon, D.K. Kim, W.N. Kim, B.G. Cho, S.M. Hong and C.M. Koo, J. Appl. Polym. Sci., 124, 2814 (2012); doi:10.1002/app.35317.
- C.W. Allen, J. Fire Sci., 11, 320 (1993); doi:10.1177/073490419301100404.
- D. Mathew, C.P. Nair and K.N. Ninan, Polym. Int., 49, 48 (2000); doi:10.1002/(SICI)1097-0126(200001)49:1<48::AID-PI309>3.0.CO;2-M.
- T. Zhang, Z.J. Du, W. Zou, H.Q. Li and C. Zhang, J. Appl. Polym. Sci., 130, 4245 (2013); doi:10.1002/app.39706.
- X. Zhang, L.P. Zhang, Q. Wu and Z.P. Mao, J. Ind. Eng. Chem., 19, 993 (2013); doi:10.1016/j.jiec.2012.11.022.
- M. El Gouri, A. El Bachiri, S.E. Hegazi, M. Rafik and A. El Harfi, Polym. Degrad. Stab., 94, 2101 (2009); doi:10.1016/j.polymdegradstab.2009.08.009.
- L.S. Tang, Q.F. Hao, L. Li and Z.G. Yuan, China Plast. Ind., 41, 104 (2013).
- Y.-N. Guo, J.-Y. Ming, C.-Y. Li, J.-J. Qiu, H.-Q. Tang and C.-M. Liu, J. Appl. Polym. Sci., 121, 3137 (2011); doi:10.1002/app.33797.
- K. Nakagawa, K. Hori and S. Kubota, Japanese Patent JP2012136451 (2012).
- H.W. Zhu, M.J. Jiang and S.Q. Li, China Synth. Fiber Ind., 30, 36 (2007).
- C. Wang, P. Wei, Y. Qian and J.P. Liu, Polym. Adv. Technol., 22, 1108 (2011); doi:10.1002/pat.1958.
- X.Y. Li, T.R. Yan, X.P. Hu, K. Wang and Q. Fu, Polym. Eng. Sci., 53, 410 (2013); doi:10.1002/pen.23278.
- M.F. Liu, Y. Liu and Q. Wang, Macromol. Mater. Eng., 292, 206 (2007); doi:10.1002/mame.200600353.
- Y.Q. Li, Q.F. Hao, J.W. Yang, Y. Wang and L.S. Tang, J. Qingdao Univ. Sci. Technol. (Nat. sci.), 3, 231 (2013).
- L.S. Tang, Q.F. Hao, Y.Z. Ge and Y.Q. Li, Asian J. Chem., 16, 8879 (2013); doi:10.14233/ajchem.2013.14879.
- L. Li, X. Li, L. Xu, Q. Su and L.S. Tang, J. Qingdao Univ. Sci. Technol., 35, 350 (2014).
- Association of Official Analytical Chemists, Official Methods of Analysis, ed. 10, p. 12 (1965).
- S.J. Maynard, T.R. Sharp and J.F. Haw, Macromolecules, 24, 2794 (1991); doi:10.1021/ma00010a024.
- F. Zhang, J. Zhang and Y. Wang, Express Polym. Lett., 1, 157 (2007); doi:10.3144/expresspolymlett.2007.25.
References
G.E. Zaikov and S.M. Lomakin, J. Appl. Polym. Sci., 86, 2449 (2002); doi:10.1002/app.10946.
A.B. Morgan and J.W. Gilman, Fire Mater., 37, 259 (2013); doi:10.1002/fam.2128.
M. Alaee, Environ. Int., 29, 683 (2003); doi:10.1016/S0160-4120(03)00121-1.
C.H. Xu, W.S. Wang, Y.K. Chen, N. Zeng, H. He, D.M. Jia and, J. South China Univ. Technol. Nat. Sci., 40, 32 (2007).
W. Peukert, K. Higashitani and R. Marczak, Adv. Powder Technol., 21, 1 (2010); doi:10.1016/j.apt.2009.12.012.
K. Wu, Z.Z. Wang and H.J. Liang, Polym. Compos., 29, 854 (2008); doi:10.1002/pc.20459.
Q. Wu, J. Lv and B. Qu, Polym. Int., 52, 1326 (2003); doi:10.1002/pi.1115.
X.L. Chen, J. Yu, M. He, S. Guo, Z. Luo and S. Lu, J. Polym. Res., 16, 357 (2009); doi:10.1007/s10965-008-9236-9.
S. Kim, J. Polym. Sci. B, Polym. Phys., 41, 936 (2003); doi:10.1002/polb.10453.
Y.J. Kwon, D.K. Kim, W.N. Kim, B.G. Cho, S.M. Hong and C.M. Koo, J. Appl. Polym. Sci., 124, 2814 (2012); doi:10.1002/app.35317.
C.W. Allen, J. Fire Sci., 11, 320 (1993); doi:10.1177/073490419301100404.
D. Mathew, C.P. Nair and K.N. Ninan, Polym. Int., 49, 48 (2000); doi:10.1002/(SICI)1097-0126(200001)49:1<48::AID-PI309>3.0.CO;2-M.
T. Zhang, Z.J. Du, W. Zou, H.Q. Li and C. Zhang, J. Appl. Polym. Sci., 130, 4245 (2013); doi:10.1002/app.39706.
X. Zhang, L.P. Zhang, Q. Wu and Z.P. Mao, J. Ind. Eng. Chem., 19, 993 (2013); doi:10.1016/j.jiec.2012.11.022.
M. El Gouri, A. El Bachiri, S.E. Hegazi, M. Rafik and A. El Harfi, Polym. Degrad. Stab., 94, 2101 (2009); doi:10.1016/j.polymdegradstab.2009.08.009.
L.S. Tang, Q.F. Hao, L. Li and Z.G. Yuan, China Plast. Ind., 41, 104 (2013).
Y.-N. Guo, J.-Y. Ming, C.-Y. Li, J.-J. Qiu, H.-Q. Tang and C.-M. Liu, J. Appl. Polym. Sci., 121, 3137 (2011); doi:10.1002/app.33797.
K. Nakagawa, K. Hori and S. Kubota, Japanese Patent JP2012136451 (2012).
H.W. Zhu, M.J. Jiang and S.Q. Li, China Synth. Fiber Ind., 30, 36 (2007).
C. Wang, P. Wei, Y. Qian and J.P. Liu, Polym. Adv. Technol., 22, 1108 (2011); doi:10.1002/pat.1958.
X.Y. Li, T.R. Yan, X.P. Hu, K. Wang and Q. Fu, Polym. Eng. Sci., 53, 410 (2013); doi:10.1002/pen.23278.
M.F. Liu, Y. Liu and Q. Wang, Macromol. Mater. Eng., 292, 206 (2007); doi:10.1002/mame.200600353.
Y.Q. Li, Q.F. Hao, J.W. Yang, Y. Wang and L.S. Tang, J. Qingdao Univ. Sci. Technol. (Nat. sci.), 3, 231 (2013).
L.S. Tang, Q.F. Hao, Y.Z. Ge and Y.Q. Li, Asian J. Chem., 16, 8879 (2013); doi:10.14233/ajchem.2013.14879.
L. Li, X. Li, L. Xu, Q. Su and L.S. Tang, J. Qingdao Univ. Sci. Technol., 35, 350 (2014).
Association of Official Analytical Chemists, Official Methods of Analysis, ed. 10, p. 12 (1965).
S.J. Maynard, T.R. Sharp and J.F. Haw, Macromolecules, 24, 2794 (1991); doi:10.1021/ma00010a024.
F. Zhang, J. Zhang and Y. Wang, Express Polym. Lett., 1, 157 (2007); doi:10.3144/expresspolymlett.2007.25.