This work is licensed under a Creative Commons Attribution 4.0 International License.
Isoquinoline Containing Azo Schiff Derivatives as Potential Antitubercular Agents: Synthesis, Characterization, Molecular Docking, PASS Prediction and ADME Studies
Corresponding Author(s) : G.R. Vijayakumar
Asian Journal of Chemistry,
Vol. 35 No. 5 (2023): Vol 35 Issue 5, 2023
Abstract
A series of isoquinoline containing novel azo Schiff base derivatives (3a-l) were synthesized and characterized by FT-IR, NMR (1H NMR & 13C NMR) and mass spectral analysis. The synthesized title compounds were evaluated for in vitro antitubercular activity against Mycobacterium tuberculosis (MTB) H37Rv strain by microplate alamar blue assay (MABA) method. Among the synthesized series of compounds, the compounds 3a, 3b, 3c and 3d were emerged as excellent antitubercular agents. Compound 3b showed the lowest MIC value of 1.6 µg/mL with a potency equivalent to the standards, isoniazid and ethambutol. Compounds 3a & 3c showed MIC value of 3.125 µg/mL, which is equivalent to the activity of a reference standard pyrazinamide. Compound 3d showed significant activity with MIC of 6.25 µg/mL and other compounds showed good to moderate activity ranging from 12.5 to 50 µg/mL. The four potent components were further tested for in vitro cytotoxicity using MTT assay against MCF-7 and HeLa cell lines to check the selectivity index. Among the tested series, compound 3b possessed the highest cytotoxicity against both MCF-7 (IC50, 7.09 ± 0.41) and HeLa (IC50, 9.04 ± 0.34) cell lines. Additionally, in silico molecular docking was performed to study its binding interaction with Mycobacterium tuberculosis enoyl reductase (InhA) and drug-like features were studied using Swiss ADME tool. PASS analysis of all the compounds showed greater Pa than Pi value for the antituberculosis activity. The results suggested that the synthesized isoquinoline containing azo Schiff base derivatives becomes promising for developing new drugs to treat tuberculosis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.R. Gandhi, A. Moll, A.W. Sturm, R. Pawinski, T. Govender, U. Lalloo, K. Zeller, J. Andrews and G. Friedland, Lancet, 368, 1575 (2006); https://doi.org/10.1016/S0140-6736(06)69573-1
- World Health Organization, Rapid communication: Key Changes to the Treatment of Drug-Resistant Tuberculosis, Global Tuberculosis Report, Geneva (2022).
- R. Johnson, E.M. Streicher, G.E. Louw, R.M. Warren, P.D. Van Helden and T.C. Victor, Curr. Issues Mol. Biol., 8, 97 (2006).
- World Health Organization, Catalogue of Mutations in Mycobacterium tuberculosis Complex and their Association with Drug Resistance, Global Tuberculosis Report, Geneva (2021).
- K. Mezgebe and E. Mulugeta, RSC Adv., 12, 25932 (2022); https://doi.org/10.1039/d2ra04934a
- A. Naqvi, M. Shahnawaaz, A.V. Rao, D.S. Seth and N.K. Sharma, E-J. Chem., 6(s1), S75 (2009); https://doi.org/10.1155/2009/589430
- H. Luo, Y. Xia, B. Sun, L. Huang, X. Wang, H.-y. Lou, X. Zhu, W. Pan and X. Zhang, Biochem. Res. Int., 2017, 6257240 (2017); https://doi.org/10.1155/2017/6257240
- H. Xu and X. Zeng, Bioorg. Med. Chem. Lett., 20, 4193 (2010); https://doi.org/10.1016/j.bmcl.2010.05.048
- G. More, S. Bootwala, S. Shenoy, J. Mascarenhas and K. Aruna, Int. J. Pharma Sci., 9, 3029 (2018); https://doi.org/10.13040/IJPSR.0975-8232.9(7).3029-35
- S. Samadhiya and A. Halve, Orient. J. Chem., 17, 119 (2001).
- F. Hamon, F. Djedaini-Pilard, F. Barbot and C. Len, Tetrahedron, 65, 10105 (2009); https://doi.org/10.1016/j.tet.2009.08.063
- P. Gordon, Nontextile Applications of Dyes, In: The Chemistry and Application of Dyes, Springer, p. 381 (1990).
- J. Kunitomo and M. Satoh, Chem. Pharm. Bull., 30, 2659 (1982); https://doi.org/10.1248/cpb.30.2659
- X. Zhang, W. Ye, S. Zhao and C.-T. Che, Phytochemistry, 65, 929 (2004); https://doi.org/10.1016/j.phytochem.2003.12.004
- E. Corey and D.Y. Gin, Tetrahedron Lett., 37, 7163 (1996); https://doi.org/10.1016/0040-4039(96)01622-X
- J.S. Yadav, B.V.S. Reddy, K.S. Raj and A.R. Prasad, Tetrahedron, 59, 1805 (2003); https://doi.org/10.1016/S0040-4020(03)00076-0
- Z. Zalán, T.A. Martinek, L. Lázár and F. Fülöp, Tetrahedron, 59, 9117 (2003); https://doi.org/10.1016/j.tet.2003.09.062
- J.D. Scott and R.M. Williams, Chem. Rev., 102, 1669 (2002); https://doi.org/10.1021/cr010212u
- P. Craig, F. Nabenhauer, P. Williams, E. Macko and J. Toner, J. Am. Chem. Soc., 74, 1316 (1952); https://doi.org/10.1021/ja01125a051
- M.C. Francisco, A.L.M. Nasser and L.M. Lopes, Phytochemistry, 62, 1265 (2003); https://doi.org/10.1016/S0031-9422(02)00655-6
- H. Kubota, T. Watanabe, A. Kakefuda, N. Masuda, K. Wada, N. Ishii, S. Sakamoto and S. Tsukamoto, Bioorg. Med. Chem., 12, 871 (2004); https://doi.org/10.1016/j.bmc.2003.12.032
- A. Hegedüs and Z. Hell, Tetrahedron Lett., 45, 8553 (2004); https://doi.org/10.1016/j.tetlet.2004.09.097
- Z.Y. Kadhim, A.N. Seewan, M.T. Abd and H.R. Saud, Int. J. Pharm. Res., 12, 402 (2020); https://doi.org/10.31838/ijpr/2020.12.03.062
- L. Collins and S.G. Franzblau, Antimicrob. Agents Chemother., 41, 1004 (1997); https://doi.org/10.1128/AAC.41.5.1004
- V.M. Kumbar, M.R. Peram, M.S. Kugaji, T. Shah, S.P. Patil, U.M. Muddapur and K.G. Bhat, Odontology, 109, 18 (2021); https://doi.org/10.1007/s10266-020-00514-y
- S. Sahana, G. Vijayakumar, R. Sivakumar, D. Sriram and D. Saiprasad, J. Korean Chem. Soc., 66, 194 (2022); https://doi.org/10.5012/jkcs.2022.66.3.194
- A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
- A. Daina, O. Michielin and V. Zoete, J. Chem. Inf. Model., 54, 3284 (2014); https://doi.org/10.1021/ci500467k
- A. Daina and V. Zoete, ChemMedChem, 11, 1117 (2016); https://doi.org/10.1002/cmdc.201600182
- D.A. Filimonov and V.V. Poroikov, Bioactive Compounds Design: Possibilities for Industrial Use, BIOS Scientific Publishers: Oxford U.K., p. 47 (1996).
- R.K. Goel, D. Singh, A. Lagunin and V. Poroikov, Med. Chem. Res., 20, 1509 (2011); https://doi.org/10.1007/s00044-010-9398-y
- N. Khurana, M.P.S. Ishar, A. Gajbhiye and R.K. Goel, Eur. J. Pharmacol., 662, 22 (2011); https://doi.org/10.1016/j.ejphar.2011.04.048
- B.S. Furniss, A.J. Hannaferd, V. Rogers, P.W.G. Smith and A.R. Tatchell, Vogel’s Textbook of Practical Organic Chemistry, Longman, Inc.: New York, Edn. 14 p. 716 (1981).
- L.-T. Lin, W.-C. Hsu and C.-C. Lin, J. Tradit. Complement. Med., 4, 24 (2014); https://doi.org/10.4103/2225-4110.124335
- G. Bickerton, G. Paolini, J. Besnard, S. Muresan and A. Hopkins, Nat. Chem., 4, 90 (2012); https://doi.org/10.1038/nchem.1243
References
N.R. Gandhi, A. Moll, A.W. Sturm, R. Pawinski, T. Govender, U. Lalloo, K. Zeller, J. Andrews and G. Friedland, Lancet, 368, 1575 (2006); https://doi.org/10.1016/S0140-6736(06)69573-1
World Health Organization, Rapid communication: Key Changes to the Treatment of Drug-Resistant Tuberculosis, Global Tuberculosis Report, Geneva (2022).
R. Johnson, E.M. Streicher, G.E. Louw, R.M. Warren, P.D. Van Helden and T.C. Victor, Curr. Issues Mol. Biol., 8, 97 (2006).
World Health Organization, Catalogue of Mutations in Mycobacterium tuberculosis Complex and their Association with Drug Resistance, Global Tuberculosis Report, Geneva (2021).
K. Mezgebe and E. Mulugeta, RSC Adv., 12, 25932 (2022); https://doi.org/10.1039/d2ra04934a
A. Naqvi, M. Shahnawaaz, A.V. Rao, D.S. Seth and N.K. Sharma, E-J. Chem., 6(s1), S75 (2009); https://doi.org/10.1155/2009/589430
H. Luo, Y. Xia, B. Sun, L. Huang, X. Wang, H.-y. Lou, X. Zhu, W. Pan and X. Zhang, Biochem. Res. Int., 2017, 6257240 (2017); https://doi.org/10.1155/2017/6257240
H. Xu and X. Zeng, Bioorg. Med. Chem. Lett., 20, 4193 (2010); https://doi.org/10.1016/j.bmcl.2010.05.048
G. More, S. Bootwala, S. Shenoy, J. Mascarenhas and K. Aruna, Int. J. Pharma Sci., 9, 3029 (2018); https://doi.org/10.13040/IJPSR.0975-8232.9(7).3029-35
S. Samadhiya and A. Halve, Orient. J. Chem., 17, 119 (2001).
F. Hamon, F. Djedaini-Pilard, F. Barbot and C. Len, Tetrahedron, 65, 10105 (2009); https://doi.org/10.1016/j.tet.2009.08.063
P. Gordon, Nontextile Applications of Dyes, In: The Chemistry and Application of Dyes, Springer, p. 381 (1990).
J. Kunitomo and M. Satoh, Chem. Pharm. Bull., 30, 2659 (1982); https://doi.org/10.1248/cpb.30.2659
X. Zhang, W. Ye, S. Zhao and C.-T. Che, Phytochemistry, 65, 929 (2004); https://doi.org/10.1016/j.phytochem.2003.12.004
E. Corey and D.Y. Gin, Tetrahedron Lett., 37, 7163 (1996); https://doi.org/10.1016/0040-4039(96)01622-X
J.S. Yadav, B.V.S. Reddy, K.S. Raj and A.R. Prasad, Tetrahedron, 59, 1805 (2003); https://doi.org/10.1016/S0040-4020(03)00076-0
Z. Zalán, T.A. Martinek, L. Lázár and F. Fülöp, Tetrahedron, 59, 9117 (2003); https://doi.org/10.1016/j.tet.2003.09.062
J.D. Scott and R.M. Williams, Chem. Rev., 102, 1669 (2002); https://doi.org/10.1021/cr010212u
P. Craig, F. Nabenhauer, P. Williams, E. Macko and J. Toner, J. Am. Chem. Soc., 74, 1316 (1952); https://doi.org/10.1021/ja01125a051
M.C. Francisco, A.L.M. Nasser and L.M. Lopes, Phytochemistry, 62, 1265 (2003); https://doi.org/10.1016/S0031-9422(02)00655-6
H. Kubota, T. Watanabe, A. Kakefuda, N. Masuda, K. Wada, N. Ishii, S. Sakamoto and S. Tsukamoto, Bioorg. Med. Chem., 12, 871 (2004); https://doi.org/10.1016/j.bmc.2003.12.032
A. Hegedüs and Z. Hell, Tetrahedron Lett., 45, 8553 (2004); https://doi.org/10.1016/j.tetlet.2004.09.097
Z.Y. Kadhim, A.N. Seewan, M.T. Abd and H.R. Saud, Int. J. Pharm. Res., 12, 402 (2020); https://doi.org/10.31838/ijpr/2020.12.03.062
L. Collins and S.G. Franzblau, Antimicrob. Agents Chemother., 41, 1004 (1997); https://doi.org/10.1128/AAC.41.5.1004
V.M. Kumbar, M.R. Peram, M.S. Kugaji, T. Shah, S.P. Patil, U.M. Muddapur and K.G. Bhat, Odontology, 109, 18 (2021); https://doi.org/10.1007/s10266-020-00514-y
S. Sahana, G. Vijayakumar, R. Sivakumar, D. Sriram and D. Saiprasad, J. Korean Chem. Soc., 66, 194 (2022); https://doi.org/10.5012/jkcs.2022.66.3.194
A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
A. Daina, O. Michielin and V. Zoete, J. Chem. Inf. Model., 54, 3284 (2014); https://doi.org/10.1021/ci500467k
A. Daina and V. Zoete, ChemMedChem, 11, 1117 (2016); https://doi.org/10.1002/cmdc.201600182
D.A. Filimonov and V.V. Poroikov, Bioactive Compounds Design: Possibilities for Industrial Use, BIOS Scientific Publishers: Oxford U.K., p. 47 (1996).
R.K. Goel, D. Singh, A. Lagunin and V. Poroikov, Med. Chem. Res., 20, 1509 (2011); https://doi.org/10.1007/s00044-010-9398-y
N. Khurana, M.P.S. Ishar, A. Gajbhiye and R.K. Goel, Eur. J. Pharmacol., 662, 22 (2011); https://doi.org/10.1016/j.ejphar.2011.04.048
B.S. Furniss, A.J. Hannaferd, V. Rogers, P.W.G. Smith and A.R. Tatchell, Vogel’s Textbook of Practical Organic Chemistry, Longman, Inc.: New York, Edn. 14 p. 716 (1981).
L.-T. Lin, W.-C. Hsu and C.-C. Lin, J. Tradit. Complement. Med., 4, 24 (2014); https://doi.org/10.4103/2225-4110.124335
G. Bickerton, G. Paolini, J. Besnard, S. Muresan and A. Hopkins, Nat. Chem., 4, 90 (2012); https://doi.org/10.1038/nchem.1243