This work is licensed under a Creative Commons Attribution 4.0 International License.
Biogenic Synthesis of Iron Oxide Nanoparticles using Bergenia ligulata Rhizome Extract and their Biological Activities
Corresponding Author(s) : Kanika Dulta
Asian Journal of Chemistry,
Vol. 35 No. 5 (2023): Vol 35 Issue 5, 2023
Abstract
Over the last few decades, nanoparticles were synthesized using various methods. Currently, studies are more focussed towards the biogenic synthesis of nanoparticles which has proven to simple, environmental-friendly, convenient and non-toxic as compared to other conventional methods. This work describes the biosynthesis of iron oxide nanoparticles (FeO NPs) using Bergenia ligulata rhizome extract. The synthesis of FeO NPs was validated by visual inspections when the colour of solution changed from dark brown to blackish brown. Other characterization including UV-visible spectroscopy, FTIR, XRD, DLS and stability tests were also performed. UV-visible spectrum of FeO NPs revealed high signal at 290 nm. The FTIR spectroscopy analysis revealed various functional groups at different bands. XRD results confirms the crystalline structure of FeO NPs. The size and stability of the synthesized nanoparticles was studied by DLS analysis and stability test. Plant extracts and NPs produced were used for a quantitative study that revealed phenolic and flavonoid compounds in high concentration. ABTS and DPPH tests were carried out to assess the in vitro radical scavenging activities. Further, the antifungal activity was performed against Rosellinia necatrix, Fusarium spp, Sclerotinia sclerotiorum. This study confirms that the synthesized FeO NPs are a novel natural preservative with possible uses in agricultural applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.T. Khan, J. Musarrat and A.A. Al-Khedhairy, Colloids Surf. B Biointerfaces, 146, 70 (2016); https://doi.org/10.1016/j.colsurfb.2016.05.046
- N. Kaushal, Z.-S. Chen and S. Lin, Front. Nanotech., 3, 753857 (2021); https://doi.org/10.3389/fnano.2021.753857
- M.S. Chavali and M.P. Nikolova, SN Appl. Sci., 1, 607 (2019); https://doi.org/10.1007/s42452-019-0592-3
- M.P. Nikolova and M.S. Chavali, Biomimetics, 5, 27 (2020); https://doi.org/10.3390/biomimetics5020027
- S. Jadoun, R. Arif, N.K. Jangid and R.K. Meena, Environ. Chem. Lett., 19, 355 (2021); https://doi.org/10.1007/s10311-020-01074-x
- E.A. Campos, D.V.B. Stockler Pinto, J.I.S. Oliveira, E.D.C. Mattos and R.D.C.L. Dutra, J. Aerosp. Technol. Manag., 7, 267 (2015); https://doi.org/10.5028/jatm.v7i3.471
- E.N. Hammad, S.S. Salem, A.A. Mohamed and W. El-Dougdoug, Appl. Biochem. Biotechnol., 194, 6053 (2022); https://doi.org/10.1007/s12010-022-04105-1
- H. Muthukumar, S.N. Mohammed, N. Chandrasekaran, A.D. Sekar, A. Pugazhendhi and M. Matheswaran, Int. J. Hydrogen Energy, 44, 2407 (2019); https://doi.org/10.1016/j.ijhydene.2018.06.046
- R. Chandrasekaran, S. Gnanasekar, P. Seetharaman, R. Keppanan, W. Arockiaswamy and S. Sivaperumal, J. Mol. Liq., 219, 232 (2016); https://doi.org/10.1016/j.molliq.2016.03.038
- S. Mitra, P. Patra, S. Pradhan, N. Debnath, K.K. Dey, D. Chattopadhyay, S. Sarkar and A. Goswami, J. Colloid Interface Sci., 444, 97 (2015); https://doi.org/10.1016/j.jcis.2014.12.041
- M. Gericke and A. Pinches, Hydrometallurgy, 83, 132 (2006); https://doi.org/10.1016/j.hydromet.2006.03.019
- A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar and M. Sastry, Colloids Surf. B Biointerfaces, 28, 313 (2003); https://doi.org/10.1016/S0927-7765(02)00174-1
- V.V. Makarov, S. Makarova, A.J. Love, O.V. Sinitsyna, A.O. Dudnik, I.V. Yaminsky, M.E. Taliansky and N.O. Kalinina, Langmuir, 30, 5982 (2014); https://doi.org/10.1021/la5011924
- P. Singh, Y.-J. Kim, D. Zhang and D.-C. Yang, Trends Biotechnol., 34, 588 (2016); https://doi.org/10.1016/j.tibtech.2016.02.006
- M.V. Arularasu, J. Devakumar and T.V. Rajendran, Polyhedron, 156, 279 (2018); https://doi.org/10.1016/j.poly.2018.09.036
- A. Khalil, M. Ovais, I. Ullah, M. Ali, Z. Shinwari and M. Maaza, Green Chem. Lett. Rev., 10, 186 (2017); https://doi.org/10.1080/17518253.2017.1339831
- S. Vasantharaj, S. Sathiyavimal, P. Senthilkumar, F. LewisOscar and A. Pugazhendhi, J. Photochem. Photobiol. B, 192, 74 (2019); https://doi.org/10.1016/j.jphotobiol.2018.12.025
- S. Gurav and N. Gurav, Int. J. Pharm. Sci. Res., 5, 1630 (2014).
- B. Koul, A. Kumar, D. Yadav and J.-O. Jin, Molecules, 25, 5555 (2020); https://doi.org/10.3390/molecules25235555
- K. Dulta, G. Kosarsoy-Agceli, P. Chauhan, R. Jasrotia and P.K. Chauhan, J. Inorg. Organomet . Polym. Mater., 31, 180 (2021); https://doi.org/10.1007/s10904-020-01684-6
- G.A. Rather, A. Nanda, M.A. Pandit, S. Yahya, M.A. Sofi, H. Barabadi and M. Saravanan, Inorg. Chem. Commun., 134, 109020 (2021); https://doi.org/10.1016/j.inoche.2021.109020
- B. Turakhia, S. Chikkala and S. Shah, Adv. Pharmacol Sci., 2019, 9825969 (2019); https://doi.org/10.1155/2019/9825969
- K. Dulta, G. Koþarsoy Agçeli, P. Chauhan, R. Jasrotia and P.K. Chauhan, J. Cluster Sci., 33, 603 (2022); https://doi.org/10.1007/s10876-020-01962-w
- K. Dulta, G.K. Agçeli, P. Chauhan and P.K. Chauhan, J. Inorg. Organomet. Polym. Mater., 31, 1846 (2021); https://doi.org/10.1007/s10904-020-01837-7
- L. Barros, M.-J. Ferreira, B. Queirós, I.C.F.R. Ferreira and P. Baptista, Food Chem., 103, 413 (2007); https://doi.org/10.1016/j.foodchem.2006.07.038
- R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Free Radic. Biol. Med., 26, 1231 (1999); https://doi.org/10.1016/S0891-5849(98)00315-3
- A.-R. Phull, Q. Abbas, A. Ali, H. Raza, S.J. Kim, M. Zia and I.-U. Haq, Future J. Pharm. Sci., 2, 31 (2016); https://doi.org/10.1016/j.fjps.2016.03.001
- S. Saif, A. Tahir and Y. Chen, Nanomaterials, 6, 209 (2016); https://doi.org/10.3390/nano6110209
- P. Torabian, F. Ghandehari and M. Fatemi, Asian J. Green Chem., 2, 181 (2018); https://doi.org/10.22034/ajgc.2018.57914
- S. Kulkarni and M. Thakur, Asian J. Bio Sci., 13, 44 (2018); https://doi.org/10.15740/HAS/AJBS/13.1/44-49
- K.P. Shejawal, D.S. Randive, S.D. Bhinge, M.A. Bhutkar, G.H. Wadkar and N.R. Jadhav, J. Genetic Eng Biotechnol., 18, 43 (2020); https://doi.org/10.1186/s43141-020-00058-2
- H. Moradbeygi, R. Jamei, R. Heidari and R. Darvishzadeh, Sci. Hortic., 272, 109537 (2020); https://doi.org/10.1016/j.scienta.2020.109537
- M. Ghorbanpour, Ind. J. Plant Physiol., 20, 249 (2015).
- M. Rai, A. Ingle, I. Gupta, S. Birla, A. Yadav and K. Abd-Elsalam, Curr. Nanosci., 9, 576 (2013); https://doi.org/10.2174/15734137113099990092
- J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar and P. Kumar, J. Nanobiotechnology, 16, 84 (2018); https://doi.org/10.1186/s12951-018-0408-4
- Y. Vitta, M. Figueroa, M. Calderon and C. Ciangherotti, Mater. Sci. Energy Technol., 3, 97 (2020); https://doi.org/10.1016/j.mset.2019.10.014
- R.S.R. El-Mohamedy and A.M. Abdalla, Agric. Technol. Thail., 10, 963 (2014).
References
S.T. Khan, J. Musarrat and A.A. Al-Khedhairy, Colloids Surf. B Biointerfaces, 146, 70 (2016); https://doi.org/10.1016/j.colsurfb.2016.05.046
N. Kaushal, Z.-S. Chen and S. Lin, Front. Nanotech., 3, 753857 (2021); https://doi.org/10.3389/fnano.2021.753857
M.S. Chavali and M.P. Nikolova, SN Appl. Sci., 1, 607 (2019); https://doi.org/10.1007/s42452-019-0592-3
M.P. Nikolova and M.S. Chavali, Biomimetics, 5, 27 (2020); https://doi.org/10.3390/biomimetics5020027
S. Jadoun, R. Arif, N.K. Jangid and R.K. Meena, Environ. Chem. Lett., 19, 355 (2021); https://doi.org/10.1007/s10311-020-01074-x
E.A. Campos, D.V.B. Stockler Pinto, J.I.S. Oliveira, E.D.C. Mattos and R.D.C.L. Dutra, J. Aerosp. Technol. Manag., 7, 267 (2015); https://doi.org/10.5028/jatm.v7i3.471
E.N. Hammad, S.S. Salem, A.A. Mohamed and W. El-Dougdoug, Appl. Biochem. Biotechnol., 194, 6053 (2022); https://doi.org/10.1007/s12010-022-04105-1
H. Muthukumar, S.N. Mohammed, N. Chandrasekaran, A.D. Sekar, A. Pugazhendhi and M. Matheswaran, Int. J. Hydrogen Energy, 44, 2407 (2019); https://doi.org/10.1016/j.ijhydene.2018.06.046
R. Chandrasekaran, S. Gnanasekar, P. Seetharaman, R. Keppanan, W. Arockiaswamy and S. Sivaperumal, J. Mol. Liq., 219, 232 (2016); https://doi.org/10.1016/j.molliq.2016.03.038
S. Mitra, P. Patra, S. Pradhan, N. Debnath, K.K. Dey, D. Chattopadhyay, S. Sarkar and A. Goswami, J. Colloid Interface Sci., 444, 97 (2015); https://doi.org/10.1016/j.jcis.2014.12.041
M. Gericke and A. Pinches, Hydrometallurgy, 83, 132 (2006); https://doi.org/10.1016/j.hydromet.2006.03.019
A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar and M. Sastry, Colloids Surf. B Biointerfaces, 28, 313 (2003); https://doi.org/10.1016/S0927-7765(02)00174-1
V.V. Makarov, S. Makarova, A.J. Love, O.V. Sinitsyna, A.O. Dudnik, I.V. Yaminsky, M.E. Taliansky and N.O. Kalinina, Langmuir, 30, 5982 (2014); https://doi.org/10.1021/la5011924
P. Singh, Y.-J. Kim, D. Zhang and D.-C. Yang, Trends Biotechnol., 34, 588 (2016); https://doi.org/10.1016/j.tibtech.2016.02.006
M.V. Arularasu, J. Devakumar and T.V. Rajendran, Polyhedron, 156, 279 (2018); https://doi.org/10.1016/j.poly.2018.09.036
A. Khalil, M. Ovais, I. Ullah, M. Ali, Z. Shinwari and M. Maaza, Green Chem. Lett. Rev., 10, 186 (2017); https://doi.org/10.1080/17518253.2017.1339831
S. Vasantharaj, S. Sathiyavimal, P. Senthilkumar, F. LewisOscar and A. Pugazhendhi, J. Photochem. Photobiol. B, 192, 74 (2019); https://doi.org/10.1016/j.jphotobiol.2018.12.025
S. Gurav and N. Gurav, Int. J. Pharm. Sci. Res., 5, 1630 (2014).
B. Koul, A. Kumar, D. Yadav and J.-O. Jin, Molecules, 25, 5555 (2020); https://doi.org/10.3390/molecules25235555
K. Dulta, G. Kosarsoy-Agceli, P. Chauhan, R. Jasrotia and P.K. Chauhan, J. Inorg. Organomet . Polym. Mater., 31, 180 (2021); https://doi.org/10.1007/s10904-020-01684-6
G.A. Rather, A. Nanda, M.A. Pandit, S. Yahya, M.A. Sofi, H. Barabadi and M. Saravanan, Inorg. Chem. Commun., 134, 109020 (2021); https://doi.org/10.1016/j.inoche.2021.109020
B. Turakhia, S. Chikkala and S. Shah, Adv. Pharmacol Sci., 2019, 9825969 (2019); https://doi.org/10.1155/2019/9825969
K. Dulta, G. Koþarsoy Agçeli, P. Chauhan, R. Jasrotia and P.K. Chauhan, J. Cluster Sci., 33, 603 (2022); https://doi.org/10.1007/s10876-020-01962-w
K. Dulta, G.K. Agçeli, P. Chauhan and P.K. Chauhan, J. Inorg. Organomet. Polym. Mater., 31, 1846 (2021); https://doi.org/10.1007/s10904-020-01837-7
L. Barros, M.-J. Ferreira, B. Queirós, I.C.F.R. Ferreira and P. Baptista, Food Chem., 103, 413 (2007); https://doi.org/10.1016/j.foodchem.2006.07.038
R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Free Radic. Biol. Med., 26, 1231 (1999); https://doi.org/10.1016/S0891-5849(98)00315-3
A.-R. Phull, Q. Abbas, A. Ali, H. Raza, S.J. Kim, M. Zia and I.-U. Haq, Future J. Pharm. Sci., 2, 31 (2016); https://doi.org/10.1016/j.fjps.2016.03.001
S. Saif, A. Tahir and Y. Chen, Nanomaterials, 6, 209 (2016); https://doi.org/10.3390/nano6110209
P. Torabian, F. Ghandehari and M. Fatemi, Asian J. Green Chem., 2, 181 (2018); https://doi.org/10.22034/ajgc.2018.57914
S. Kulkarni and M. Thakur, Asian J. Bio Sci., 13, 44 (2018); https://doi.org/10.15740/HAS/AJBS/13.1/44-49
K.P. Shejawal, D.S. Randive, S.D. Bhinge, M.A. Bhutkar, G.H. Wadkar and N.R. Jadhav, J. Genetic Eng Biotechnol., 18, 43 (2020); https://doi.org/10.1186/s43141-020-00058-2
H. Moradbeygi, R. Jamei, R. Heidari and R. Darvishzadeh, Sci. Hortic., 272, 109537 (2020); https://doi.org/10.1016/j.scienta.2020.109537
M. Ghorbanpour, Ind. J. Plant Physiol., 20, 249 (2015).
M. Rai, A. Ingle, I. Gupta, S. Birla, A. Yadav and K. Abd-Elsalam, Curr. Nanosci., 9, 576 (2013); https://doi.org/10.2174/15734137113099990092
J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar and P. Kumar, J. Nanobiotechnology, 16, 84 (2018); https://doi.org/10.1186/s12951-018-0408-4
Y. Vitta, M. Figueroa, M. Calderon and C. Ciangherotti, Mater. Sci. Energy Technol., 3, 97 (2020); https://doi.org/10.1016/j.mset.2019.10.014
R.S.R. El-Mohamedy and A.M. Abdalla, Agric. Technol. Thail., 10, 963 (2014).