This work is licensed under a Creative Commons Attribution 4.0 International License.
Ruthenium(III) Catalyzed Oxidation of Hypoxanthine and Xanthine by Mn(VII) in Aqueous Brønsted Acid Solutions: A Kinetic and Mechanistic Study
Corresponding Author(s) : A. Ramakrishna Reddy
Asian Journal of Chemistry,
Vol. 35 No. 5 (2023): Vol 35 Issue 5, 2023
Abstract
Mn(VII) is broadly utilized as an oxidizing specialist, however it couldn’t oxidize hypoxanthine (HXAN) and xanthine (XAN) even in concentrated Brønsted acidic (HClO4, H2SO4) media and at raised temperatures. In any case, the responses went through flawlessly in presence of millimolar arrangements of ruthenium chloride (Ru(III) or RuCl3) in presence of fluid Brønsted acidic arrangements. Under synergist conditions, response complied with first request energy in [(Mn(VII)] and [Alkaloid] at steady causticity and temperature. Increase in [Ru(III)] dramatically sped up the reactions with a first order dependence on [catalyst] at constant acidity and temperature. The rate of oxidation was enhanced by an increase in the concentration of Brønsted acid (HClO4, H2SO4). The rate increases observed were examined using the acidity function criteria of Zucker-Hammett, Bunnett and Bunnett-Olsen. The most logical mechanism, involving the involvement of the water molecule in the slow step, has been proposed based on observed Bunnett-Olsen criteria of acidity functions (as proton transferring agent).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.M. Kao, K.D. Huang, J.Y. Wang, T.Y. Chen and H.Y. Chien, J. Hazard. Mater., 153, 919 (2008); https://doi.org/10.1016/j.jhazmat.2007.09.116
- S. Dash, S. Patel and B.K. Mishra, Tetrahedron, 65, 707 (2009); https://doi.org/10.1016/j.tet.2008.10.038
- R.H. Waldemer and P.G. Tratnyek, Environ. Sci. Technol., 40, 1055 (2006); https://doi.org/10.1021/es051330s
- J.W. Ladbury and C.F. Cullis, Chem. Rev., 58, 403 (1958); https://doi.org/10.1021/cr50020a005
- J. Walton, P. Labine and A. Reidies, The Chemistry of Permanganate in Degradative Oxidations, In Chemical Oxidation: CRC Press, pp. 205-230 (1992).
- W.W. Eckenfelder, A.R. Bowers and J.A. Roth, Chemical Oxidation Technologies for the Nineties; Eckenfelder, p. 262 (1992).
- L. Hu, H.M. Martin and T.J. Strathmann, Environ. Sci. Technol., 44, 6416 (2010); https://doi.org/10.1021/es101331j
- A. Quick and D. Rogers, J. Chem. Soc. Perkin Trans. II, 465 (1976); https://doi.org/10.1039/P29760000465
- R. Sailani, D. Pareek, A. Meena, P. Sharma and C.L. Khandelwal, Int. J. Chem. Sci., 16, 230 (2018).
- S.A. Chimatadar, T. Basavaraj and S.T. Nandibewoor, Inorg. React. Mech., 4, 209 (2002); https://doi.org/10.1080/1028662021000062563
- D.A. Kostic, D.S. Dimitrijevic, G.S. Stojanovic, A.S. Ðordevic, I.R. Palic and J.D. Ickovski, J. Chem., 2015, 294858 (2015); https://doi.org/10.1155/2015/294858
- L. Zucker and L.P. Hammett, J. Am. Chem. Soc., 61, 2785 (1939); https://doi.org/10.1021/ja01265a066
- J.P. Bunnett, J. Am. Chem. Soc., 83, 4968 (1961); https://doi.org/10.1021/ja01485a020
- J.F. Bunnett and F.P. Olsen, Can. J. Chem., 44, 1899 (1966); https://doi.org/10.1139/v66-286
- J.F. Bunnett and F.P. Olsen, Can. J. Chem., 44, 1917 (1966); https://doi.org/10.1139/v66-287
- K.A. Connors, Chemical Kinetics, The Study of Reaction Rates in Solution, VCH, New York (1990).
- R.A. Cox and K. Yates, Can. J. Chem., 61, 2225 (1983); https://doi.org/10.1139/v83-388
- M.A. Paul and F.A. Long, Chem. Rev., 57, 1 (1957); https://doi.org/10.1021/cr50013a001
- L.P. Hammett, Physical Organic Chemistry, McGraw Hill, Tokyo (1970).
- F.M. Menger and C.E. Portnoy, J. Am. Chem. Soc., 89, 4698 (1967); https://doi.org/10.1021/ja00994a023
- F.M. Menger, Angew. Chem. Int. Ed. Engl., 30, 1086 (1991); https://doi.org/10.1002/anie.199110861
- H.A. Benesi and J.H. Hildebrand, J. Am. Chem. Soc., 71, 2703 (1949); https://doi.org/10.1021/ja01176a030
- R. Foster, Organic Charge-Transfer Complexes, Academic Press: New York (1969).
- E.V. Anslyn and D.A. Dougherty, Modern Physical Organic Chemistry, University Science Books (2006).
- C. Gupta, S.K. Mishra and P.D. Sharma, J. Chem. Res., 7, 254 (1993).
- M. Bhasin, I. Sharma and P.D. Sharma, J. Chem. Res., 1, 201 (1999).
- A.R. Binyahia, S. Dubey and P.D. Sharma, Oxid. Commun., 23, 246 (2000).
- M. Bhasin, S. Bansal and P.D. Sharma, Oxid. Commun., 23, 515 (2000).
- M. Bhasin, S. Dubey, I. Sharma and P.D. Sharma, Indian J. Chem., 39A, 1036 (2000).
References
C.M. Kao, K.D. Huang, J.Y. Wang, T.Y. Chen and H.Y. Chien, J. Hazard. Mater., 153, 919 (2008); https://doi.org/10.1016/j.jhazmat.2007.09.116
S. Dash, S. Patel and B.K. Mishra, Tetrahedron, 65, 707 (2009); https://doi.org/10.1016/j.tet.2008.10.038
R.H. Waldemer and P.G. Tratnyek, Environ. Sci. Technol., 40, 1055 (2006); https://doi.org/10.1021/es051330s
J.W. Ladbury and C.F. Cullis, Chem. Rev., 58, 403 (1958); https://doi.org/10.1021/cr50020a005
J. Walton, P. Labine and A. Reidies, The Chemistry of Permanganate in Degradative Oxidations, In Chemical Oxidation: CRC Press, pp. 205-230 (1992).
W.W. Eckenfelder, A.R. Bowers and J.A. Roth, Chemical Oxidation Technologies for the Nineties; Eckenfelder, p. 262 (1992).
L. Hu, H.M. Martin and T.J. Strathmann, Environ. Sci. Technol., 44, 6416 (2010); https://doi.org/10.1021/es101331j
A. Quick and D. Rogers, J. Chem. Soc. Perkin Trans. II, 465 (1976); https://doi.org/10.1039/P29760000465
R. Sailani, D. Pareek, A. Meena, P. Sharma and C.L. Khandelwal, Int. J. Chem. Sci., 16, 230 (2018).
S.A. Chimatadar, T. Basavaraj and S.T. Nandibewoor, Inorg. React. Mech., 4, 209 (2002); https://doi.org/10.1080/1028662021000062563
D.A. Kostic, D.S. Dimitrijevic, G.S. Stojanovic, A.S. Ðordevic, I.R. Palic and J.D. Ickovski, J. Chem., 2015, 294858 (2015); https://doi.org/10.1155/2015/294858
L. Zucker and L.P. Hammett, J. Am. Chem. Soc., 61, 2785 (1939); https://doi.org/10.1021/ja01265a066
J.P. Bunnett, J. Am. Chem. Soc., 83, 4968 (1961); https://doi.org/10.1021/ja01485a020
J.F. Bunnett and F.P. Olsen, Can. J. Chem., 44, 1899 (1966); https://doi.org/10.1139/v66-286
J.F. Bunnett and F.P. Olsen, Can. J. Chem., 44, 1917 (1966); https://doi.org/10.1139/v66-287
K.A. Connors, Chemical Kinetics, The Study of Reaction Rates in Solution, VCH, New York (1990).
R.A. Cox and K. Yates, Can. J. Chem., 61, 2225 (1983); https://doi.org/10.1139/v83-388
M.A. Paul and F.A. Long, Chem. Rev., 57, 1 (1957); https://doi.org/10.1021/cr50013a001
L.P. Hammett, Physical Organic Chemistry, McGraw Hill, Tokyo (1970).
F.M. Menger and C.E. Portnoy, J. Am. Chem. Soc., 89, 4698 (1967); https://doi.org/10.1021/ja00994a023
F.M. Menger, Angew. Chem. Int. Ed. Engl., 30, 1086 (1991); https://doi.org/10.1002/anie.199110861
H.A. Benesi and J.H. Hildebrand, J. Am. Chem. Soc., 71, 2703 (1949); https://doi.org/10.1021/ja01176a030
R. Foster, Organic Charge-Transfer Complexes, Academic Press: New York (1969).
E.V. Anslyn and D.A. Dougherty, Modern Physical Organic Chemistry, University Science Books (2006).
C. Gupta, S.K. Mishra and P.D. Sharma, J. Chem. Res., 7, 254 (1993).
M. Bhasin, I. Sharma and P.D. Sharma, J. Chem. Res., 1, 201 (1999).
A.R. Binyahia, S. Dubey and P.D. Sharma, Oxid. Commun., 23, 246 (2000).
M. Bhasin, S. Bansal and P.D. Sharma, Oxid. Commun., 23, 515 (2000).
M. Bhasin, S. Dubey, I. Sharma and P.D. Sharma, Indian J. Chem., 39A, 1036 (2000).