Copyright (c) 2023 Nihmiya Abdul Rahim, Prof. A.H.L.R. Nilmini, R.M.H.H. Jayarathne
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recent advancement in CO2 capturing: An electrochemical approach
Corresponding Author(s) : A.R. Nihmiya
Asian Journal of Chemistry,
Vol. 35 No. 9 (2023): Vol 35 Issue 9, 2023
Abstract
Various methods have been suggested to address the problem of elevated levels of carbon dioxide (CO2) in the atmosphere. A potential technique among these strategies is the electrochemical reduction of CO2 (ERC), which can simultaneously solve issues like CO2-induced global warming and enable sustainable energy storage. The ERC procedure takes place within an electrochemical cell at the interface between an ionic conductor (the electrolyte) and an electron conductor (the cathode). In this process, the anode facilitates the oxidation of water, while the cathode enables CO2 reduction. However, a significant challenge in the ERC process lies in selecting an appropriate catalyst for the cathode material. In addition to explore the new transition metals, researchers have also investigated metal complex catalysts and nanostructures to enhance catalyst activity and product selectivity. Non-aqueous electrolytes have been employed to avoid the hydrogen evolution reaction. Ionic liquids have been proposed as a solution to address the challenge of low CO2 solubility in the reaction medium, offering significant potential for enhancing conversion rates to resolve the limitations faced by aqueous and non-aqueous systems solid polymer electrolytes are being considered. The cell configuration has been continuously improved to improve the mass transfer effects and to better separate the reaction products. This review paper provides a preface to the ERC process and an inclusive review of several decades of research work on ERC process by analyzing the adopted various and novel cathode materials, electrolytes and cell configuration.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.M. Cuéllar-Franca and A. Azapagic, J. CO2 Util., 9, 82 (2015); https://doi.org/10.1016/j.jcou.2014.12.001
- K Chelvam and M M Hanafiah, IOP Conf. Ser.: Earth Environ. Sci., 1167, 012036 (2023); https://doi.org/10.1088/1755-1315/1167/1/012036
- D.Y.C. Leung, G. Caramanna and M.M. Maroto-Valer, Renew. Sustain. Energy Rev., 39, 426 (2014); https://doi.org/10.1016/j.rser.2014.07.093
- T. Terlouw, K. Treyer, C. Bauer and M. Mazzotti, Environ. Sci. Technol., 55, 11397 (2021); https://doi.org/10.1021/acs.est.1c03263
- A. Mansourizadeh and A.F. Ismail, J. Hazard. Mater., 171, 38 (2009); https://doi.org/10.1016/j.jhazmat.2009.06.026
- H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland and I. Wright, J. Environ. Sci., 20, 14 (2008); https://doi.org/10.1016/S1001-0742(08)60002-9
- C.H. Yu, C.H. Huang and C.S. Tan, Aerosol Air Qual. Res., 12, 745 (2012); https://doi.org/10.4209/aaqr.2012.05.0132
- P. Luis, T. Van Gerven and B. Van Der Bruggen, Pror. Energy Combust. Sci., 38, 419 (2012); https://doi.org/10.1016/j.pecs.2012.01.004
- T.E. Rufford, S. Smart, G.C.Y. Watson, B.F. Graham, J. Boxall, J.C. Diniz da Costa and E.F. May, J. Petrol. Sci. Eng., 94-95, 123 (2012); https://doi.org/10.1016/j.petrol.2012.06.016
- J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff and J.K. Nørskov, Nat. Mater., 5, 909 (2006); https://doi.org/10.1038/nmat1752
- B. Zhao, Y. Su, W. Tao, L. Li and Y. Peng, Int. J. Greenh. Gas Control, 9, 355 (2012); https://doi.org/10.1016/j.ijggc.2012.05.006
- A.B. Rao and E.S. Rubin, Environ. Sci. Technol., 36, 4467 (2002); https://doi.org/10.1021/es0158861
- E.S. Rubin, C. Chen and A.B. Rao, Energy Policy, 35, 4444 (2007); https://doi.org/10.1016/j.enpol.2007.03.009
- G. Centi and S. Perathoner, Catal. Today, 148, 191 (2009); https://doi.org/10.1016/j.cattod.2009.07.075
- I. Ganesh, Renew. Sustain. Energy Rev., 59, 1269 (2016); https://doi.org/10.1016/j.rser.2016.01.026
- J. Albo, M. Alvarez-Guerra, P. Castaño and A. Irabien, Green Chem., 17, 2304 (2015); https://doi.org/10.1039/C4GC02453B
- J.P. Collin and J.P. Sauvage, Coord. Chem. Rev., 93, 245 (1989); https://doi.org/10.1016/0010-8545(89)80018-9
- C. Costentin, M. Robert and J.M. Savéant, Chem. Soc. Rev., 42, 2423 (2013); https://doi.org/10.1039/C2CS35360A
- A. Dominguez-Ramos, B. Singh, X. Zhang, E.G. Hertwich and A. Irabien, J. Clean. Prod., 104, 148 (2015); https://doi.org/10.1016/j.jclepro.2013.11.046
- M. Gattrell, N. Gupta and A. Co, J. Electroanal. Chem., 594, 1 (2006); https://doi.org/10.1016/j.jelechem.2006.05.013
- M. Jitaru, J. Chem. Technol. Metall., 42, 333 (2007).
- A. Mustafa, B.G. Lougou,, Y. Shuai, Z. Wang, S. Razzaq, J. Zhao and H. Tan, Sustain. Energy Fuels, 4, 4352 (2020);https://doi.org/10.1039/D0SE00544D
- R.J. Lim, M. Xie, M.A. Sk, J.-M. Lee, A. Fisher, X. Wang and K.H. Lim, Catal. Today, 233, 169 (2014); https://doi.org/10.1016/j.cattod.2013.11.037
- H.-R.M. Jhong, S. Ma and P.J.A. Kenis, Curr. Opin. Chem. Eng., 2, 191 (2013); https://doi.org/10.1016/j.coche.2013.03.005
- D.T. Whipple and P.J.A. Kenis, J. Phys. Chem. Lett., 1, 3451 (2010); https://doi.org/10.1021/jz1012627
- T.E. Teeter and P. Van Rysselberghe, J. Chem. Phys., 22, 759 (1954); https://doi.org/10.1063/1.1740178
- Y. Hori, K. Kikuchi and S. Suzuki, Chem. Lett., 14, 1695 (1985); https://doi.org/10.1246/cl.1985.1695
- D.P. Summers, S. Leach and K.W. Frese Jr., J. Electroanal. Chem. Interf. Electrochem., 205, 219 (1986); https://doi.org/10.1016/0022-0728(86)90233-0
- M. Le, M. Ren, Z. Zhang, P.T. Sprunger, R.L. Kurtz and J.C. Flake, J. Electrochem. Soc., 158, E45 (2011); https://doi.org/10.1149/1.3561636
- K.W. Frese, J. Electrochem. Soc., 138, 3338 (1991); https://doi.org/10.1149/1.2085411
- M. Schwartz, R.L. Cook, V.M. Kehoe, R.C. MacDuff, J. Patel and A.F. Sammells, J. Electrochem. Soc., 140, 614 (1993); https://doi.org/10.1149/1.2056131
- E. Andrews, M. Ren, F. Wang, Z. Zhang, P. Sprunger, R. Kurtz and J. Flake, J. Electrochem. Soc., 160, H841 (2013); https://doi.org/10.1149/2.105311jes
- A. Schizodimou and G. Kyriacou, Electrochim. Acta, 78, 171 (2012); https://doi.org/10.1016/j.electacta.2012.05.118
- K.W. Frese and S. Leach, J. Electrochem. Soc., 132, 259 (1985); https://doi.org/10.1149/1.2113780
- K. Ogura and M. Fujita, J. Mol. Catal., 41, 303 (1987); https://doi.org/10.1016/0304-5102(87)80108-6
- Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G. Chen and F. Jiao, Nat. Commun., 5, 3242 (2014); https://doi.org/10.1038/ncomms4242
- Y. Chen, C.W. Li and M.W. Kanan, J. Am. Chem. Soc., 134, 19969 (2012); https://doi.org/10.1021/ja309317u
- F. Jia, X. Yu and L. Zhang, J. Power Sources, 252, 85 (2014); https://doi.org/10.1016/j.jpowsour.2013.12.002
- J. Qu, X. Zhang, Y. Wang and C. Xie, Electrochim. Acta, 50, 3576 (2005); https://doi.org/10.1016/j.electacta.2004.11.061
- K. Ogura, N. Endo, M. Nakayama and H. Ootsuka, J. Electrochem. Soc., 142, 4026 (1995); https://doi.org/10.1149/1.2048457
- K.P. Kuhl, E.R. Cave, D.N. Abram and T.F. Jaramillo, Energy Environ. Sci., 5, 7050 (2012); https://doi.org/10.1039/c2ee21234j
- B.A. Rosen, W. Zhu, G. Kaul, A. Salehi-Khojin and R.I. Masel, J. Electrochem. Soc., 160, H138 (2013); https://doi.org/10.1149/2.004303jes
- J. Medina-Ramos, R.C. Pupillo, T.P. Keane, J.L. DiMeglio and J. Rosenthal, J. Am. Chem. Soc., 137, 5021 (2015); https://doi.org/10.1021/ja5121088
- A. Begum and P.G. Pickup, Electrochem. Commun., 9, 2525 (2007); https://doi.org/10.1016/j.elecom.2007.07.034
- M. Isaacs, J.C. Canales, A. Riquelme, M. Lucero, M.J. Aguirre and J. Costamagna, J. Coord. Chem., 56, 1193 (2003); https://doi.org/10.1080/00958970310001624447
- T.V. Magdesieva, I.V. Zhukov, D.N. Kravchuk, O.A. Semenikhin, L.G. Tomilova and K.P. Butin, Russ. Chem. Bull., 51, 805 (2002); https://doi.org/10.1023/A:1016076515710
- M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe and T. Sakata, J. Electrochem. Soc., 137, 1772 (1990); https://doi.org/10.1149/1.2086796
- K. Hara, A. Kudo and T. Sakata, J. Electroanal. Chem., 391, 141 (1995); https://doi.org/10.1016/0022-0728(95)03935-A
- S. Kaneco, K. Iiba, N.-H. Hiei, K. Ohta, T. Mizuno and T. Suzuki, Electrochim. Acta, 44, 4701 (1999); https://doi.org/10.1016/S0013-4686(99)00262-5
- K. Iiba, T. Mizuno, S. Kaneco and K. Ohta, J. Solid State Electrochem., 3, 424 (1999); https://doi.org/10.1007/s100080050177
- S. Kaneco, H. Katsumata, T. Suzuki and K. Ohta, Electrochim. Acta, 51, 3316 (2006); https://doi.org/10.1016/j.electacta.2005.09.025
- S. Ohya, S. Kaneco, H. Katsumata, T. Suzuki and K. Ohta, Catal. Today, 148, 329 (2009); https://doi.org/10.1016/j.cattod.2009.07.077
- J.J. Kim, D.P. Summers and K.W. Frese Jr., J. Electroanal. Chem. Interf. Electrochem., 245, 223 (1988); https://doi.org/10.1016/0022-0728(88)80071-8
- Y. Terunuma, A. Saitoh and Y. Momose, J. Electroanal. Chem., 434, 69 (1997); https://doi.org/10.1016/S0022-0728(97)00122-8
- T.-Y. Chang, R.-M. Liang, P.-W. Wu, J.-Y. Chen and Y.-C. Hsieh, Mater. Lett., 63, 1001 (2009); https://doi.org/10.1016/j.matlet.2009.01.067
- X. Nie, M.R. Esopi, M.J. Janik and A. Asthagiri, Angew. Chem. Int. Ed., 52, 2459 (2013); https://doi.org/10.1002/anie.201208320
- K.J.P. Schouten, Y. Kwon, C.J.M. van der Ham, Z. Qin and M.T.M. Koper, Chem. Sci., 2, 1902 (2011); https://doi.org/10.1039/c1sc00277e
- N.J. Firet, T. Burdyny, N. Nesbitt, S. Chandrashekar, A. Longo and W. Smith, Catal. Sci. Technol., 10, 5870 (2020); https://doi.org/10.1039/D0CY01267J
- T. Hatsukade, K.P. Kuhl, E.R. Cave, D.N. Abram and T.F. Jaramillo, Phys. Chem. Chem. Phys., 16, 13814 (2014); https://doi.org/10.1039/C4CP00692E
- N. Hoshi, M. Kato and Y. Hori, J. Electroanal. Chem., 440, 283 (1997); https://doi.org/10.1016/S0022-0728(97)00447-6
- K. Watanabe, U. Nagashima and H. Hosoya, Chem. Phys. Lett., 209, 109 (1993); https://doi.org/10.1016/0009-2614(93)87210-T
- K. Watanabe, U. Nagashima and H. Hosoya, Appl. Surf. Sci., 75, 121 (1994); https://doi.org/10.1016/0169-4332(94)90147-3
- P. Jeanty, C. Scherer, E. Magori, K. Wiesner-fleischer, O. Hinrichsen and M. Fleischer, J. CO2 Util., 24, 454 (2018); https://doi.org/10.1016/j.jcou.2018.01.011
- J. Sobkowski and A. Czerwinski, J. Phys. Chem., 89, 365 (1985); https://doi.org/10.1021/j100248a037
- A. Rodes, E. Pastor and T. Iwasita, J. Electroanal. Chem., 373, 167 (1994); https://doi.org/10.1016/0022-0728(94)03306-4
- N. Hoshi, T. Suzuki and Y. Hori, J. Phys. Chem. B, 101, 8520 (1997); https://doi.org/10.1021/jp971294m
- N. Hoshi, S. Kawatani, M. Kudo and Y. Hori, J. Electroanal. Chem., 467, 67 (1999); https://doi.org/10.1016/S0022-0728(98)00476-8
- N. Hoshi, M. Noma, T. Suzuki and Y. Hori, J. Electroanal. Chem., 421, 15 (1997); https://doi.org/10.1016/S0022-0728(96)01023-6
- D. Kolbe and W. Vielstich, Electrochim. Acta, 41, 2457 (1996); https://doi.org/10.1016/0013-4686(96)00032-1
- C. Iwakura, S. Takezawa and H. Inoue, J. Electroanal. Chem., 459, 167 (1998); https://doi.org/10.1016/S0022-0728(98)00320-9
- B.I. Podlovchenko, E.A. Kolyadko and S. Lu, J. Electroanal. Chem., 373, 185 (1994); https://doi.org/10.1016/0022-0728(94)03324-2
- K. Natsui, H. Iwakawa, N. Ikemiya, K. Nakata and Y. Einaga, Angew. Chem. Int. Ed., 57, 2639 (2018); https://doi.org/10.1002/anie.201712271
- J. Lee, J. Lim, C.W. Roh, H.S. Whang and H. Lee, J. CO2 Util., 31, 244 (2019); https://doi.org/10.1016/j.jcou.2019.03.022
- J. Wu, F.G. Risalvato, F.-S. Ke, P.J. Pellechia, X.-D. Zhou, J. Electrochem. Soc., 159, F353 (2012); https://doi.org/10.1149/2.049207jes
- D. Li, J. Wu, T. Liu, J. Liu, Z. Yan, L. Zhen and Y. Feng, Chem. Eng. J., 375, 122024 (2019); https://doi.org/10.1016/j.cej.2019.122024
- R. Xia, S. Zhang, X. Ma and F. Jiao, J. Mater. Chem. A Mater. Energy Sustain., 8, 15884 (2020); https://doi.org/10.1039/D0TA03427D
- J. Lim, P.W. Kang, S.S. Jeon and H. Lee, J. Mater. Chem. A Mater. Energy Sustain., 8, 9032 (2020); https://doi.org/10.1039/D0TA00569J
- K. Yang, R. Kas, W.A. Smith and T. Burdyny, ACS Energy Lett., 6, 33 (2021); https://doi.org/10.1021/acsenergylett.0c02184
- C.W. Li and M.W. Kanan, J. Am. Chem. Soc., 134, 7231 (2012); https://doi.org/10.1021/ja3010978
- Y. Chen and M.W. Kanan, J. Am. Chem. Soc., 134, 1986 (2012); https://doi.org/10.1021/ja2108799
- H. Noda, S. Ikeda, Y. Oda, K. Imai, M. Maeda and K. Ito, Bull. Chem. Soc. Jpn., 63, 2459 (1990); https://doi.org/10.1246/bcsj.63.2459
- A. Bandi and H.-M. Kühne, J. Electrochem. Soc., 139, 1605 (1992); https://doi.org/10.1149/1.2069464
- A. Bandi, J. Electrochem. Soc., 137, 2157 (1990); https://doi.org/10.1149/1.2086903
- N. Spataru, K. Tokuhiro, C. Terashima, T.N. Rao and A. Fujishima, J. Appl. Electrochem., 33, 1205 (2003); https://doi.org/10.1023/B:JACH.0000003866.85015.b6
- P. Li, H. Hu, J. Xu, H. Jing, H. Peng, J. Lu, C. Wu and S. Ai, Appl. Catal. B, 147, 912 (2014); https://doi.org/10.1016/j.apcatb.2013.10.010
- T.V. Magdesieva, T. Yamamoto, D.A. Tryk and A. Fujishima, J. Electrochem. Soc., 149, D89 (2002); https://doi.org/10.1149/1.1475690
- V. Tripkovic, M. Vanin, M. Karamad, M.E. Björketun, K.W. Jacobsen, K.S. Thygesen and J. Rossmeisl, J. Phys. Chem. C, 117, 9187 (2013); https://doi.org/10.1021/jp306172k
- K. Leung, I.M.B. Nielsen, N. Sai, C. Medforth and J.A. Shelnutt, J. Phys. Chem. A, 114, 10174 (2010); https://doi.org/10.1021/jp1012335
- A.S. Varela, N. Ranjbar Sahraie, J. Steinberg, W. Ju, H. Oh and P. Strasser, Angew. Chem. Int. Ed., 54, 10758 (2015); https://doi.org/10.1002/anie.201502099
- J. Shen, R. Kortlever, R. Kas, Y.Y. Birdja, O. Diaz-Morales, Y. Kwon, I. Ledezma-Yanez, K.P. Schouten, G. Mul and M.T.M. Koper, Nat. Commun., 6, 8177 (2015); https://doi.org/10.1038/ncomms9177
- W.W. Kramer and C.C.L. McCrory, Chem. Sci., 7, 2506 (2016); https://doi.org/10.1039/C5SC04015A
- R. Angamuthu, P. Byers, M. Lutz, A.L. Spek and E. Bouwman, Science, 327, 313 (2010); https://doi.org/10.1126/science.1177981
- I. Hod, M.D. Sampson, P. Deria, C.P. Kubiak, O.K. Farha and J.T. Hupp, ACS Catal., 5, 6302 (2015); https://doi.org/10.1021/acscatal.5b01767
- S. Samanta, P.K. Das, S. Chatterjee and A. Dey, J. Porphyr. Phthalocyan., 19, 92 (2015); https://doi.org/10.1142/S1088424615300049
- S. Meshitsuka, M. Ichikawa and K. Tamaru, J. Chem. Soc. Chem. Commun., 5, 158 (1974); https://doi.org/10.1039/c39740000158
- B. Verdejo, S. Blasco, J. González, E. García-España, P. Gaviña, S. Tatay, A. Doménech, M.T. Doménech-Carbó, H.R. Jiménez and C. Soriano, Eur. J. Inorg. Chem., 2008, 84 (2008); https://doi.org/10.1002/ejic.200700767
- G.B. Balazs and F.C. Anson, J. Electroanal. Chem., 322, 325 (1992); https://doi.org/10.1016/0022-0728(92)80086-J
- M. Beley, J.P. Collin, R. Ruppert and J.P. Sauvage, J. Am. Chem. Soc., 108, 7461 (1986); https://doi.org/10.1021/ja00284a003
- V.S. Thoi and C.J. Chang, Chem. Commun., 47, 6578 (2011); https://doi.org/10.1039/c1cc10449g
- E. Simón-Manso and C.P. Kubiak, Organometallics, 24, 96 (2005); https://doi.org/10.1021/om0494723
- C. Arana, M. Keshavarz, K.T. Potts and H.D. Abruña, Inorg. Chim. Acta, 225, 285 (1994); https://doi.org/10.1016/0020-1693(94)04059-1
- T. Abe, T. Yoshida, S. Tokita, F. Taguchi, H. Imaya and M. Kaneko, J. Electroanal. Chem., 412, 125 (1996); https://doi.org/10.1016/0022-0728(96)04631-1
- H. Aga, A. Aramata and Y. Hisaeda, J. Electroanal. Chem., 437, 111 (1997); https://doi.org/10.1016/S0022-0728(97)00386-0
- S. Aoi, K. Mase, K. Ohkubo and S. Fukuzumi, Chem. Commun., 51, 10226 (2015); https://doi.org/10.1039/C5CC03340C
- S. Lin, C.S. Diercks, Y. Zhang, N. Kornienko, E.M. Nichols, Y. Zhao, A.R. Paris, D. Kim, P. Yang, O.M. Yaghi and C.J. Chang, Science, 349, 1208 (2015); https://doi.org/10.1126/science.aac8343
- N. Elgrishi, M.B. Chambers and M. Fontecave, Chem. Sci., 6, 2522 (2015); https://doi.org/10.1039/C4SC03766A
- S. Kapusta and N. Hackerman, J. Electrochem. Soc., 131, 1511 (1984); https://doi.org/10.1149/1.2115882
- B.J. Fisher and R. Eisenberg, J. Am. Chem. Soc., 102, 7361 (1980); https://doi.org/10.1021/ja00544a035
- M. Abdinejad, A. Seifitokaldani, C. Dao, E.H. Sargent, X.A. Zhang and H.B. Kraatz, ACS Appl. Energy Mater., 2, 1330 (2019); https://doi.org/10.1021/acsaem.8b01900
- M. Wang, K. Torbensen, D. Salvatore, S. Ren, D. Joulié , F. Dumoulin, D. Mendoza, B. Lassalle-Kaiser, U. Isci, C.P. Berlinguette and M. Robert, Nat.Commun., 10, 3602 (2019); https://doi.org/10.1038/s41467-019-11542-w
- A.G.M.M. Hossain, T. Nagaoka and K. Ogura, Electrochim. Acta, 41, 2773 (1996); https://doi.org/10.1016/0013-4686(96)00136-3
- A.G.M.M. Hossain, T. Nagaoka and K. Ogura, Electrochim. Acta, 42, 2577 (1997); https://doi.org/10.1016/S0013-4686(96)00453-7
- B.D. Steffey, C.J. Curtis and D.L. DuBois, Organometallics, 14, 4937 (1995); https://doi.org/10.1021/om00010a066
- J.W. Raebiger, J.W. Turner, B.C. Noll, C.J. Curtis, A. Miedaner, B. Cox and D.L. DuBois, Organometallics, 25, 3345 (2006); https://doi.org/10.1021/om060228g
- J.J. Walsh, C.L. Smith, G. Neri, G.F.S. Whitehead, C.M. Robertson and A.J. Cowan, Faraday Discuss., 183, 147 (2015); https://doi.org/10.1039/C5FD00071H
- E.E. Benson, C.P. Kubiak, A.J. Sathrum and J.M. Smieja, Chem. Soc. Rev., 38, 89 (2009); https://doi.org/10.1039/B804323J
- C.Z. Yuan, K. Liang, X. Xia, Z.K. Yang, Y. Jiang, T. Zhao, C. Lin, T. Cheang, S. Zhong and A. Xu, Catal. Sci. Technol., 9, 3669 (2019); https://doi.org/10.1039/C9CY00363K
- C. Dai, Y. Qiu, Y. He, Q. Zhang, R. Liu, J. Du and C. Tao, New J. Chem., 43, 3493 (2019); https://doi.org/10.1039/C8NJ05205K
- C. Ding, C. Feng, Y. Mei, F. Liu, H. Wang, M. Dupuis and C. Li, Appl. Catal. B, 268, 118391 (2020); https://doi.org/10.1016/j.apcatb.2019.118391
- A. Dutta, I.Z. Montiel, R. Erni, K. Kiran, M. Rahaman, J. Drnec and P. Broekmann, Nano Energy, 68, 104331 (2020); https://doi.org/10.1016/j.nanoen.2019.104331
- X.Z.X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang, W. Pan, Z. Jiang, H. Zheng, M. Lucero, H. Wang, G.E. Sterbinsky, Q. Ma, Y. Wang, Z. Feng, J. Li, H. Dai and Y. Liang, Nat. Energy, 5, 684 (2020); https://doi.org/10.1038/s41560-020-0667-9
- Y. Tsubonouchi, D. Takahashi, M.R. Berber, E.A. Mohamed, Z.N. Zahran, A.M. Alenad, N.A. Althubiti and M. Yagi, Electrochim. Acta, 387, 138545 (2021); https://doi.org/10.1016/j.electacta.2021.138545
- M. Rakowski Dubois and D.L. Dubois, Acc. Chem. Res., 42, 1974 (2009); https://doi.org/10.1021/ar900110c
- J. Medina-Ramos, J.L. Dimeglio and J. Rosenthal, J. Am. Chem. Soc., 136, 8361 (2014); https://doi.org/10.1021/ja501923g
- M. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, R.F. Klie, P. Kral, J. Abiade and A. Salehi-Khojin, Nat. Commun., 5, 1 (2014);https://doi.org/10.1038/ncomms5470
- J.L. Dimeglio and J. Rosenthal, J. Am. Chem. Soc., 135, 8798 (2013); https://doi.org/10.1021/ja4033549
- R. Kas, R. Kortlever, H. Yýlmaz, M. Koper and G. Mul, Chem. ElectroChem., 2, 354 (2015); https://doi.org/10.1002/celc.201402373
- J. Qiao, P. Jiang, J. Liu and J. Zhang, Electrochem. Commun., 38, 8 (2014); https://doi.org/10.1016/j.elecom.2013.10.023
- S. Zhang, P. Kang and T.J. Meyer, J. Am. Chem. Soc., 136, 1734 (2014); https://doi.org/10.1021/ja4113885
- D. Kim, J. Resasco, Y. Yu, A.M. Asiri and P. Yang, Nat. Commun., 5, 4948 (2014); https://doi.org/10.1038/ncomms5948
- W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson and S. Sun, J. Am. Chem. Soc., 135, 16833 (2013); https://doi.org/10.1021/ja409445p
- C.S. Chen, A.D. Handoko, J.H. Wan, L. Ma, D. Ren and B.S. Yeo, Catal. Sci. Technol., 5, 161 (2015); https://doi.org/10.1039/C4CY00906A
- D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi and B.S. Yeo, ACS Catal., 5, 2814 (2015); https://doi.org/10.1021/cs502128q
- D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang and X. Bao, J. Am. Chem. Soc., 137, 4288 (2015); https://doi.org/10.1021/jacs.5b00046
- P. Kang, S. Zhang, T.J. Meyer and M. Brookhart, Angew. Chem. Int. Ed., 53, 8709 (2014); https://doi.org/10.1002/anie.201310722
- H. Zhao, Y. Zhang, B. Zhao, Y. Chang and Z. Li, Environ. Sci. Technol., 46, 5198 (2012); https://doi.org/10.1021/es300186f
- M. Gangeri, S. Perathoner, S. Caudo, G. Centi, J. Amadou, D. Bégin, C. Pham-Huu, M.J. Ledoux, J.-P. Tessonnier and D.S. Su, Catal. Today, 143, 57 (2009); https://doi.org/10.1016/j.cattod.2008.11.001
- S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song, R.L. House, J.T. Glass and T.J. Meyer, J. Am. Chem. Soc., 136, 7845 (2014); https://doi.org/10.1021/ja5031529
- T. Yamamoto, D.A. Tryk, A. Fujishima and H. Ohata, Electrochim. Acta, 47, 3327 (2002); https://doi.org/10.1016/S0013-4686(02)00253-0
- C. Delacourt, P.L. Ridgway, J.B. Kerr and J. Newman, J. Electrochem. Soc., 155, B42 (2008); https://doi.org/10.1149/1.2801871
- S.R. Narayanan, B. Haines, J. Soler and T.I. Valdez, J. Electrochem. Soc., 158, A167 (2011); https://doi.org/10.1149/1.3526312
- S. Sen, S.M. Brown, M. Leonard and F.R. Brushett, J. Appl. Electrochem., 49, 917 (2019); https://doi.org/10.1007/s10800-019-01332-z
- P. Huang, J. Chen, P. Deng, F. Yang, J. Pan, K. Qi, H. Liu and B.Y. Xia, J. Catal., 381, 608 (2020); https://doi.org/10.1016/j.jcat.2019.12.008
- M. Abdinejad, Z. Mirza, X.A. Zhang and H.B. Kraatz, ACS Sustain. Chem. Eng., 8, 1715 (2020); https://doi.org/10.1021/acssuschemeng.9b06837
- J. Castelo-Quibén, A. Abdelwahab, M. Pérez-Cadenas, S. Morales-Torres, F.J. Maldonado-Hódar, F. Carrasco-Marín and A.F. Pérez-Cadenas, J. CO2 Util., 24, 240 (2018); https://doi.org/10.1016/j.jcou.2018.01.007
- Y. Wang, H. Shen, K.J.T. Livi, D. Raciti, H. Zong, J. Gregg, M. Onadeko, Y. Wan, A. Watson and C. Wang, Nano Lett., 19, 8461 (2019); https://doi.org/10.1021/acs.nanolett.9b02748
- Y. Hou, Y.L. Liang, P.C. Shi, Y.B. Huang and R. Cao, Appl. Catal. B, 271, 118929 (2020); https://doi.org/10.1016/j.apcatb.2020.118929
- Z. Ma, X. Zhang, D. Wu, X. Han, L. Zhang, H. Wang, F. Xu, Z. Gao and K. Jiang, J. Colloid Interface Sci., 570, 31 (2020); https://doi.org/10.1016/j.jcis.2020.02.050
- J.-M. Oh, C.C. Venters, C. Di, A.M. Pinto, L. Wan, I. Younis, Z. Cai, C. Arai, B.R. So, J. Duan and G. Dreyfuss, Nat. Commun., 11, 1 (2020); https://doi.org/10.1038/s41467-019-13993-7
- J.H. Guo, X.Y. Zhang, X.Y. Dao and W.Y. Sun, ACS Appl. Nano Mater., 3, 2625 (2020); https://doi.org/10.1021/acsanm.0c00007
- M.C.O. Monteiro, M.F. Philips, K.J.P. Schouten and M.T.M. Koper, Nat. Commun., 12, 4943 (2021); https://doi.org/10.1038/s41467-021-24936-6
- C. Choi, T. Cheng, M. Flores Espinosa, H. Fei, X. Duan, W.A. Goddard III and Y. Huang, Adv. Mater., 31, 1805405 (2019); https://doi.org/10.1002/adma.201805405
- M. Khalil, G.T.M. Kadja and M.M. Ilmi, J. Ind. Eng. Chem., 93, 78 (2021); https://doi.org/10.1016/j.jiec.2020.09.028
- Z. Yin, G.T.R. Palmore and S. Sun, Trends Chem., 1, 739 (2019); https://doi.org/10.1016/j.trechm.2019.05.004
- Q. Chen, P. Tsiakaras and P. Shen, Catalysts, 12, 1348 (2022); https://doi.org/10.3390/catal12111348
- S.Y. Chae, S.Y. Lee and O.S. Joo, Electrochim. Acta, 303, 118 (2019); https://doi.org/10.1016/j.electacta.2019.02.046
- W.-H. Cheng, M.H. Richter, I. Sullivan, D.M. Larson, C. Xiang, B.S. Brunschwig and H.A. Atwater, ACS Energy Lett., 5, 470 (2020); https://doi.org/10.1021/acsenergylett.9b02576
- D. Yang, Q. Zhu, C. Chen, H. Liu, Z. Liu, Z. Zhao, X. Zhang, S. Liu and B. Han, Nat. Commun., 10, 1 (2019);https://doi.org/10.1038/s41467-019-08653-9
- A.N. Frumkin, Trans. Faraday Soc., 55, 156 (1959); https://doi.org/10.1039/tf9595500156
- Y. Hori, H. Konishi, T. Futamura, A. Murata, O. Koga, H. Sakurai and K. Oguma, Electrochim. Acta, 50, 5354 (2005); https://doi.org/10.1016/j.electacta.2005.03.015
- Y. Hori, Modern Aspects of Electrochemistry, Springer, pp. 89-189 (2008).
- Y. Hori, A. Murata and R. Takahashi, J. Chem. Soc. Faraday Trans. 1, Phys. Chem. Condens. Phases, 85, 2309 (1989);https://doi.org/10.1039/F19898502309
- A. Murata and Y. Hori, Bull. Chem. Soc. Jpn., 64, 123 (1991); https://doi.org/10.1246/bcsj.64.123
- M. König, J. Vaes, E. Klemm and D. Pant, iScience, 19, 135 (2019);https://doi.org/10.1016/j.isci.2019.07.014
- G. Marcandalli, M.C.O. Monteiro, A. Goyal and M.T.M. Koper, Acc. Chem. Res., 55, 1900 (2022);https://doi.org/10.1021/acs.accounts.2c00080
- M.M. de Salles Pupo and R. Kortleverm, ChemPhysChem, 20, 2926 (2019);https://doi.org/10.1002/cphc.201900680
- X. Zhang, S.-X. Guo, K.A. Gandionco, A.M. Bond and J. Zhang, Mater. Today Adv., 7, 100074 (2020);https://doi.org/10.1016/j.mtadv.2020.100074
- K. Wiranarongkorn, K. Eamsiri, Y.-S. Chen and A. Arpornwichanop, J. CO2 Utiliz., 71, 102477 (2023); https://doi.org/10.1016/j.jcou.2023.102477
- S. Ikeda, T. Takagi and K. Ito, Bull. Chem. Soc. Jpn., 60, 2517 (1987); https://doi.org/10.1246/bcsj.60.2517
- J.J. Carroll and A.E. Mather, J. Solution Chem., 21, 607 (1992); https://doi.org/10.1007/BF00650756
- P. Stelmachowski, S. Sirotin, P. Bazin, F. Maugé and A. Travert, Phys. Chem. Chem. Phys., 15, 9335 (2013); https://doi.org/10.1039/c3cp51146d
- R. Beya, B. Coasnea and C. Picard, PNAS, 118, e2102449118 (2021); https://doi.org/10.1073/pnas.2102449118
- Y. Pei, H. Zhong and F. Jin, Ener. Sci. Eng., 9, 1012 (2021); https://doi.org/10.1002/ese3.935
- A.S. Varela, Curr. Opin. Green Sustain. Chem., 26, 100371 (2020); https://doi.org/10.1016/j.cogsc.2020.100371
- N. Gupta, M. Gattrell and B. MacDougall, J. Appl. Electrochem., 36, 161 (2006); https://doi.org/10.1007/s10800-005-9058-y
- Y. Hori, A. Murata and Y. Yoshinami, J. Chem. Soc., Faraday Trans., 87, 125 (1991); https://doi.org/10.1039/ft9918700125
- M.R. Thorson, K.I. Siil and P.J.A. Kenis, J. Electrochem. Soc., 160, F69 (2013); https://doi.org/10.1149/2.052301jes
- B.M. Setterfield-Price and R.A.W. Dryfe, J. Electroanal. Chem., 730, 48 (2014); https://doi.org/10.1016/j.jelechem.2014.07.009
- T.P. Silverstein, S.R. Kirk, S.C. Meyer and K.L. Holman, Lab. Tech. Biochem. Mol. Biol., 20, 5 (1990); https://doi.org/10.1016/S0075-7535(08)70092-5
- Y. Hori, H. Wakebe, T. Tsukamoto and O. Koga, Electrochim. Acta, 39, 1833 (1994); https://doi.org/10.1016/0013-4686(94)85172-7
- Y. Hori, R. Takahashi, Y. Yoshinami and A. Murata, J. Phys. Chem. B, 101, 7075 (1997); https://doi.org/10.1021/jp970284i
- R.L. Cook, R.C. MacDuff and A.F. Sammells, J. Electrochem. Soc., 135, 1470 (1988); https://doi.org/10.1149/1.2096030
- B. Innocent, D. Liaigre, D. Pasquier, F. Ropital, J.M. Léger and K.B. Kokoh, J. Appl. Electrochem., 39, 227 (2009); https://doi.org/10.1007/s10800-008-9658-4
- M. Tomisaki, S. Kasahara, K. Natsui, N. Ikemiya and Y. Einaga, J. Am. Chem. Soc., 141, 7414 (2019); https://doi.org/10.1021/jacs.9b01773
- C. Amatore and J.M. Saveant, J. Am. Chem. Soc., 103, 5021 (1981); https://doi.org/10.1021/ja00407a008
- L.L. Snuffin, L.W. Whaley and L. Yu, J. Electrochem. Soc., 158, F155 (2011); https://doi.org/10.1149/1.3606487
- B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple, P.J.A. Kenis and R.I. Masel, Science, 334, 643 (2011); https://doi.org/10.1126/science.1209786
- C.W. Machan, C.J. Stanton III, J.E. Vandezande, G.F. Majetich, H.F. Schaefer III, C.P. Kubiak and J. Agarwal, Inorg. Chem., 54, 8849 (2015); https://doi.org/10.1021/acs.inorgchem.5b01715
- S. Shironita, K. Karasuda, M. Sato and M. Umeda, J. Power Sources, 228, 68 (2013); https://doi.org/10.1016/j.jpowsour.2012.11.097
- S. Shironita, K. Karasuda, K. Sato and M. Umeda, J. Power Sources, 240, 404 (2013); https://doi.org/10.1016/j.jpowsour.2013.04.034
- D.W. Dewulf and A.J. Bard, Catal. Lett., 1, 73 (1988); https://doi.org/10.1007/BF00765357
- S. Komatsu, M. Tanaka, A. Okumura and A. Kungi, Electrochim. Acta, 40, 745 (1995); https://doi.org/10.1016/0013-4686(94)00325-U
- L.M. Aeshala, R.G. Uppaluri and A. Verma, J. CO2 Util., 3-4, 49 (2013); https://doi.org/10.1016/j.jcou.2013.09.004
- L.M. Aeshala, S.U. Rahman and A. Verma, Sep. Purif. Technol., 94, 131 (2012); https://doi.org/10.1016/j.seppur.2011.12.030
- K. Ogura, C.T. Migita and T. Nagaoka, J. Mol. Catal., 56, 276 (1989); https://doi.org/10.1016/0304-5102(89)80191-9
- Y. Nishimura, D. Yoshida, M. Mizuhata, K. Asaka, K. Oguro and H. Takenaka, Energy Convers. Manage., 36, 629 (1995); https://doi.org/10.1016/0196-8904(95)00084-Q
- K. Subramanian, K. Asokan, D. Jeevarathinam and M. Chandrasekaran, J. Appl. Electrochem., 37, 255 (2007); https://doi.org/10.1007/s10800-006-9252-6
- J.A. Nighswander, N. Kalogerakis and A.K. Mehrotra, J. Chem. Eng. Data, 34, 355 (1989); https://doi.org/10.1021/je00057a027
- K. Hara, A. Tsuneto, A. Kudo and T. Sakata, J. Electrochem. Soc., 141, 2097 (1994); https://doi.org/10.1149/1.2055067
- K. Hara, A. Kudo and T. Sakata, J. Electroanal. Chem., 421, 1 (1997); https://doi.org/10.1016/S0022-0728(96)01028-5
- N. Furuya, T. Yamazaki and M. Shibata, J. Electroanal. Chem., 431, 39 (1997); https://doi.org/10.1016/S0022-0728(97)00159-9
- N. Sonoyama, M. Kirii and T. Sakata, Electrochem. Commun., 1, 213 (1999); https://doi.org/10.1016/S1388-2481(99)00041-7
- R. Aydin and F. Köleli, J. Electroanal. Chem., 535, 107 (2002); https://doi.org/10.1016/S0022-0728(02)01151-8
- Y. Hori, K. Kikuchi, A. Murata and S. Suzuki, Chem. Lett., 15, 897 (1986); https://doi.org/10.1246/cl.1986.897
- S. Kaneco, N. Hiei, Y. Xing, H. Katsumata, H. Ohnishi, T. Suzuki and K. Ohta, Electrochim. Acta, 48, 51 (2002); https://doi.org/10.1016/S0013-4686(02)00550-9
- G.M. Brisard, A.P.M. Camargo, F.C. Nart and T. Iwasita, Electrochem. Commun., 3, 603 (2001); https://doi.org/10.1016/S1388-2481(01)00223-5
References
R.M. Cuéllar-Franca and A. Azapagic, J. CO2 Util., 9, 82 (2015); https://doi.org/10.1016/j.jcou.2014.12.001
K Chelvam and M M Hanafiah, IOP Conf. Ser.: Earth Environ. Sci., 1167, 012036 (2023); https://doi.org/10.1088/1755-1315/1167/1/012036
D.Y.C. Leung, G. Caramanna and M.M. Maroto-Valer, Renew. Sustain. Energy Rev., 39, 426 (2014); https://doi.org/10.1016/j.rser.2014.07.093
T. Terlouw, K. Treyer, C. Bauer and M. Mazzotti, Environ. Sci. Technol., 55, 11397 (2021); https://doi.org/10.1021/acs.est.1c03263
A. Mansourizadeh and A.F. Ismail, J. Hazard. Mater., 171, 38 (2009); https://doi.org/10.1016/j.jhazmat.2009.06.026
H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland and I. Wright, J. Environ. Sci., 20, 14 (2008); https://doi.org/10.1016/S1001-0742(08)60002-9
C.H. Yu, C.H. Huang and C.S. Tan, Aerosol Air Qual. Res., 12, 745 (2012); https://doi.org/10.4209/aaqr.2012.05.0132
P. Luis, T. Van Gerven and B. Van Der Bruggen, Pror. Energy Combust. Sci., 38, 419 (2012); https://doi.org/10.1016/j.pecs.2012.01.004
T.E. Rufford, S. Smart, G.C.Y. Watson, B.F. Graham, J. Boxall, J.C. Diniz da Costa and E.F. May, J. Petrol. Sci. Eng., 94-95, 123 (2012); https://doi.org/10.1016/j.petrol.2012.06.016
J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff and J.K. Nørskov, Nat. Mater., 5, 909 (2006); https://doi.org/10.1038/nmat1752
B. Zhao, Y. Su, W. Tao, L. Li and Y. Peng, Int. J. Greenh. Gas Control, 9, 355 (2012); https://doi.org/10.1016/j.ijggc.2012.05.006
A.B. Rao and E.S. Rubin, Environ. Sci. Technol., 36, 4467 (2002); https://doi.org/10.1021/es0158861
E.S. Rubin, C. Chen and A.B. Rao, Energy Policy, 35, 4444 (2007); https://doi.org/10.1016/j.enpol.2007.03.009
G. Centi and S. Perathoner, Catal. Today, 148, 191 (2009); https://doi.org/10.1016/j.cattod.2009.07.075
I. Ganesh, Renew. Sustain. Energy Rev., 59, 1269 (2016); https://doi.org/10.1016/j.rser.2016.01.026
J. Albo, M. Alvarez-Guerra, P. Castaño and A. Irabien, Green Chem., 17, 2304 (2015); https://doi.org/10.1039/C4GC02453B
J.P. Collin and J.P. Sauvage, Coord. Chem. Rev., 93, 245 (1989); https://doi.org/10.1016/0010-8545(89)80018-9
C. Costentin, M. Robert and J.M. Savéant, Chem. Soc. Rev., 42, 2423 (2013); https://doi.org/10.1039/C2CS35360A
A. Dominguez-Ramos, B. Singh, X. Zhang, E.G. Hertwich and A. Irabien, J. Clean. Prod., 104, 148 (2015); https://doi.org/10.1016/j.jclepro.2013.11.046
M. Gattrell, N. Gupta and A. Co, J. Electroanal. Chem., 594, 1 (2006); https://doi.org/10.1016/j.jelechem.2006.05.013
M. Jitaru, J. Chem. Technol. Metall., 42, 333 (2007).
A. Mustafa, B.G. Lougou,, Y. Shuai, Z. Wang, S. Razzaq, J. Zhao and H. Tan, Sustain. Energy Fuels, 4, 4352 (2020);https://doi.org/10.1039/D0SE00544D
R.J. Lim, M. Xie, M.A. Sk, J.-M. Lee, A. Fisher, X. Wang and K.H. Lim, Catal. Today, 233, 169 (2014); https://doi.org/10.1016/j.cattod.2013.11.037
H.-R.M. Jhong, S. Ma and P.J.A. Kenis, Curr. Opin. Chem. Eng., 2, 191 (2013); https://doi.org/10.1016/j.coche.2013.03.005
D.T. Whipple and P.J.A. Kenis, J. Phys. Chem. Lett., 1, 3451 (2010); https://doi.org/10.1021/jz1012627
T.E. Teeter and P. Van Rysselberghe, J. Chem. Phys., 22, 759 (1954); https://doi.org/10.1063/1.1740178
Y. Hori, K. Kikuchi and S. Suzuki, Chem. Lett., 14, 1695 (1985); https://doi.org/10.1246/cl.1985.1695
D.P. Summers, S. Leach and K.W. Frese Jr., J. Electroanal. Chem. Interf. Electrochem., 205, 219 (1986); https://doi.org/10.1016/0022-0728(86)90233-0
M. Le, M. Ren, Z. Zhang, P.T. Sprunger, R.L. Kurtz and J.C. Flake, J. Electrochem. Soc., 158, E45 (2011); https://doi.org/10.1149/1.3561636
K.W. Frese, J. Electrochem. Soc., 138, 3338 (1991); https://doi.org/10.1149/1.2085411
M. Schwartz, R.L. Cook, V.M. Kehoe, R.C. MacDuff, J. Patel and A.F. Sammells, J. Electrochem. Soc., 140, 614 (1993); https://doi.org/10.1149/1.2056131
E. Andrews, M. Ren, F. Wang, Z. Zhang, P. Sprunger, R. Kurtz and J. Flake, J. Electrochem. Soc., 160, H841 (2013); https://doi.org/10.1149/2.105311jes
A. Schizodimou and G. Kyriacou, Electrochim. Acta, 78, 171 (2012); https://doi.org/10.1016/j.electacta.2012.05.118
K.W. Frese and S. Leach, J. Electrochem. Soc., 132, 259 (1985); https://doi.org/10.1149/1.2113780
K. Ogura and M. Fujita, J. Mol. Catal., 41, 303 (1987); https://doi.org/10.1016/0304-5102(87)80108-6
Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G. Chen and F. Jiao, Nat. Commun., 5, 3242 (2014); https://doi.org/10.1038/ncomms4242
Y. Chen, C.W. Li and M.W. Kanan, J. Am. Chem. Soc., 134, 19969 (2012); https://doi.org/10.1021/ja309317u
F. Jia, X. Yu and L. Zhang, J. Power Sources, 252, 85 (2014); https://doi.org/10.1016/j.jpowsour.2013.12.002
J. Qu, X. Zhang, Y. Wang and C. Xie, Electrochim. Acta, 50, 3576 (2005); https://doi.org/10.1016/j.electacta.2004.11.061
K. Ogura, N. Endo, M. Nakayama and H. Ootsuka, J. Electrochem. Soc., 142, 4026 (1995); https://doi.org/10.1149/1.2048457
K.P. Kuhl, E.R. Cave, D.N. Abram and T.F. Jaramillo, Energy Environ. Sci., 5, 7050 (2012); https://doi.org/10.1039/c2ee21234j
B.A. Rosen, W. Zhu, G. Kaul, A. Salehi-Khojin and R.I. Masel, J. Electrochem. Soc., 160, H138 (2013); https://doi.org/10.1149/2.004303jes
J. Medina-Ramos, R.C. Pupillo, T.P. Keane, J.L. DiMeglio and J. Rosenthal, J. Am. Chem. Soc., 137, 5021 (2015); https://doi.org/10.1021/ja5121088
A. Begum and P.G. Pickup, Electrochem. Commun., 9, 2525 (2007); https://doi.org/10.1016/j.elecom.2007.07.034
M. Isaacs, J.C. Canales, A. Riquelme, M. Lucero, M.J. Aguirre and J. Costamagna, J. Coord. Chem., 56, 1193 (2003); https://doi.org/10.1080/00958970310001624447
T.V. Magdesieva, I.V. Zhukov, D.N. Kravchuk, O.A. Semenikhin, L.G. Tomilova and K.P. Butin, Russ. Chem. Bull., 51, 805 (2002); https://doi.org/10.1023/A:1016076515710
M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe and T. Sakata, J. Electrochem. Soc., 137, 1772 (1990); https://doi.org/10.1149/1.2086796
K. Hara, A. Kudo and T. Sakata, J. Electroanal. Chem., 391, 141 (1995); https://doi.org/10.1016/0022-0728(95)03935-A
S. Kaneco, K. Iiba, N.-H. Hiei, K. Ohta, T. Mizuno and T. Suzuki, Electrochim. Acta, 44, 4701 (1999); https://doi.org/10.1016/S0013-4686(99)00262-5
K. Iiba, T. Mizuno, S. Kaneco and K. Ohta, J. Solid State Electrochem., 3, 424 (1999); https://doi.org/10.1007/s100080050177
S. Kaneco, H. Katsumata, T. Suzuki and K. Ohta, Electrochim. Acta, 51, 3316 (2006); https://doi.org/10.1016/j.electacta.2005.09.025
S. Ohya, S. Kaneco, H. Katsumata, T. Suzuki and K. Ohta, Catal. Today, 148, 329 (2009); https://doi.org/10.1016/j.cattod.2009.07.077
J.J. Kim, D.P. Summers and K.W. Frese Jr., J. Electroanal. Chem. Interf. Electrochem., 245, 223 (1988); https://doi.org/10.1016/0022-0728(88)80071-8
Y. Terunuma, A. Saitoh and Y. Momose, J. Electroanal. Chem., 434, 69 (1997); https://doi.org/10.1016/S0022-0728(97)00122-8
T.-Y. Chang, R.-M. Liang, P.-W. Wu, J.-Y. Chen and Y.-C. Hsieh, Mater. Lett., 63, 1001 (2009); https://doi.org/10.1016/j.matlet.2009.01.067
X. Nie, M.R. Esopi, M.J. Janik and A. Asthagiri, Angew. Chem. Int. Ed., 52, 2459 (2013); https://doi.org/10.1002/anie.201208320
K.J.P. Schouten, Y. Kwon, C.J.M. van der Ham, Z. Qin and M.T.M. Koper, Chem. Sci., 2, 1902 (2011); https://doi.org/10.1039/c1sc00277e
N.J. Firet, T. Burdyny, N. Nesbitt, S. Chandrashekar, A. Longo and W. Smith, Catal. Sci. Technol., 10, 5870 (2020); https://doi.org/10.1039/D0CY01267J
T. Hatsukade, K.P. Kuhl, E.R. Cave, D.N. Abram and T.F. Jaramillo, Phys. Chem. Chem. Phys., 16, 13814 (2014); https://doi.org/10.1039/C4CP00692E
N. Hoshi, M. Kato and Y. Hori, J. Electroanal. Chem., 440, 283 (1997); https://doi.org/10.1016/S0022-0728(97)00447-6
K. Watanabe, U. Nagashima and H. Hosoya, Chem. Phys. Lett., 209, 109 (1993); https://doi.org/10.1016/0009-2614(93)87210-T
K. Watanabe, U. Nagashima and H. Hosoya, Appl. Surf. Sci., 75, 121 (1994); https://doi.org/10.1016/0169-4332(94)90147-3
P. Jeanty, C. Scherer, E. Magori, K. Wiesner-fleischer, O. Hinrichsen and M. Fleischer, J. CO2 Util., 24, 454 (2018); https://doi.org/10.1016/j.jcou.2018.01.011
J. Sobkowski and A. Czerwinski, J. Phys. Chem., 89, 365 (1985); https://doi.org/10.1021/j100248a037
A. Rodes, E. Pastor and T. Iwasita, J. Electroanal. Chem., 373, 167 (1994); https://doi.org/10.1016/0022-0728(94)03306-4
N. Hoshi, T. Suzuki and Y. Hori, J. Phys. Chem. B, 101, 8520 (1997); https://doi.org/10.1021/jp971294m
N. Hoshi, S. Kawatani, M. Kudo and Y. Hori, J. Electroanal. Chem., 467, 67 (1999); https://doi.org/10.1016/S0022-0728(98)00476-8
N. Hoshi, M. Noma, T. Suzuki and Y. Hori, J. Electroanal. Chem., 421, 15 (1997); https://doi.org/10.1016/S0022-0728(96)01023-6
D. Kolbe and W. Vielstich, Electrochim. Acta, 41, 2457 (1996); https://doi.org/10.1016/0013-4686(96)00032-1
C. Iwakura, S. Takezawa and H. Inoue, J. Electroanal. Chem., 459, 167 (1998); https://doi.org/10.1016/S0022-0728(98)00320-9
B.I. Podlovchenko, E.A. Kolyadko and S. Lu, J. Electroanal. Chem., 373, 185 (1994); https://doi.org/10.1016/0022-0728(94)03324-2
K. Natsui, H. Iwakawa, N. Ikemiya, K. Nakata and Y. Einaga, Angew. Chem. Int. Ed., 57, 2639 (2018); https://doi.org/10.1002/anie.201712271
J. Lee, J. Lim, C.W. Roh, H.S. Whang and H. Lee, J. CO2 Util., 31, 244 (2019); https://doi.org/10.1016/j.jcou.2019.03.022
J. Wu, F.G. Risalvato, F.-S. Ke, P.J. Pellechia, X.-D. Zhou, J. Electrochem. Soc., 159, F353 (2012); https://doi.org/10.1149/2.049207jes
D. Li, J. Wu, T. Liu, J. Liu, Z. Yan, L. Zhen and Y. Feng, Chem. Eng. J., 375, 122024 (2019); https://doi.org/10.1016/j.cej.2019.122024
R. Xia, S. Zhang, X. Ma and F. Jiao, J. Mater. Chem. A Mater. Energy Sustain., 8, 15884 (2020); https://doi.org/10.1039/D0TA03427D
J. Lim, P.W. Kang, S.S. Jeon and H. Lee, J. Mater. Chem. A Mater. Energy Sustain., 8, 9032 (2020); https://doi.org/10.1039/D0TA00569J
K. Yang, R. Kas, W.A. Smith and T. Burdyny, ACS Energy Lett., 6, 33 (2021); https://doi.org/10.1021/acsenergylett.0c02184
C.W. Li and M.W. Kanan, J. Am. Chem. Soc., 134, 7231 (2012); https://doi.org/10.1021/ja3010978
Y. Chen and M.W. Kanan, J. Am. Chem. Soc., 134, 1986 (2012); https://doi.org/10.1021/ja2108799
H. Noda, S. Ikeda, Y. Oda, K. Imai, M. Maeda and K. Ito, Bull. Chem. Soc. Jpn., 63, 2459 (1990); https://doi.org/10.1246/bcsj.63.2459
A. Bandi and H.-M. Kühne, J. Electrochem. Soc., 139, 1605 (1992); https://doi.org/10.1149/1.2069464
A. Bandi, J. Electrochem. Soc., 137, 2157 (1990); https://doi.org/10.1149/1.2086903
N. Spataru, K. Tokuhiro, C. Terashima, T.N. Rao and A. Fujishima, J. Appl. Electrochem., 33, 1205 (2003); https://doi.org/10.1023/B:JACH.0000003866.85015.b6
P. Li, H. Hu, J. Xu, H. Jing, H. Peng, J. Lu, C. Wu and S. Ai, Appl. Catal. B, 147, 912 (2014); https://doi.org/10.1016/j.apcatb.2013.10.010
T.V. Magdesieva, T. Yamamoto, D.A. Tryk and A. Fujishima, J. Electrochem. Soc., 149, D89 (2002); https://doi.org/10.1149/1.1475690
V. Tripkovic, M. Vanin, M. Karamad, M.E. Björketun, K.W. Jacobsen, K.S. Thygesen and J. Rossmeisl, J. Phys. Chem. C, 117, 9187 (2013); https://doi.org/10.1021/jp306172k
K. Leung, I.M.B. Nielsen, N. Sai, C. Medforth and J.A. Shelnutt, J. Phys. Chem. A, 114, 10174 (2010); https://doi.org/10.1021/jp1012335
A.S. Varela, N. Ranjbar Sahraie, J. Steinberg, W. Ju, H. Oh and P. Strasser, Angew. Chem. Int. Ed., 54, 10758 (2015); https://doi.org/10.1002/anie.201502099
J. Shen, R. Kortlever, R. Kas, Y.Y. Birdja, O. Diaz-Morales, Y. Kwon, I. Ledezma-Yanez, K.P. Schouten, G. Mul and M.T.M. Koper, Nat. Commun., 6, 8177 (2015); https://doi.org/10.1038/ncomms9177
W.W. Kramer and C.C.L. McCrory, Chem. Sci., 7, 2506 (2016); https://doi.org/10.1039/C5SC04015A
R. Angamuthu, P. Byers, M. Lutz, A.L. Spek and E. Bouwman, Science, 327, 313 (2010); https://doi.org/10.1126/science.1177981
I. Hod, M.D. Sampson, P. Deria, C.P. Kubiak, O.K. Farha and J.T. Hupp, ACS Catal., 5, 6302 (2015); https://doi.org/10.1021/acscatal.5b01767
S. Samanta, P.K. Das, S. Chatterjee and A. Dey, J. Porphyr. Phthalocyan., 19, 92 (2015); https://doi.org/10.1142/S1088424615300049
S. Meshitsuka, M. Ichikawa and K. Tamaru, J. Chem. Soc. Chem. Commun., 5, 158 (1974); https://doi.org/10.1039/c39740000158
B. Verdejo, S. Blasco, J. González, E. García-España, P. Gaviña, S. Tatay, A. Doménech, M.T. Doménech-Carbó, H.R. Jiménez and C. Soriano, Eur. J. Inorg. Chem., 2008, 84 (2008); https://doi.org/10.1002/ejic.200700767
G.B. Balazs and F.C. Anson, J. Electroanal. Chem., 322, 325 (1992); https://doi.org/10.1016/0022-0728(92)80086-J
M. Beley, J.P. Collin, R. Ruppert and J.P. Sauvage, J. Am. Chem. Soc., 108, 7461 (1986); https://doi.org/10.1021/ja00284a003
V.S. Thoi and C.J. Chang, Chem. Commun., 47, 6578 (2011); https://doi.org/10.1039/c1cc10449g
E. Simón-Manso and C.P. Kubiak, Organometallics, 24, 96 (2005); https://doi.org/10.1021/om0494723
C. Arana, M. Keshavarz, K.T. Potts and H.D. Abruña, Inorg. Chim. Acta, 225, 285 (1994); https://doi.org/10.1016/0020-1693(94)04059-1
T. Abe, T. Yoshida, S. Tokita, F. Taguchi, H. Imaya and M. Kaneko, J. Electroanal. Chem., 412, 125 (1996); https://doi.org/10.1016/0022-0728(96)04631-1
H. Aga, A. Aramata and Y. Hisaeda, J. Electroanal. Chem., 437, 111 (1997); https://doi.org/10.1016/S0022-0728(97)00386-0
S. Aoi, K. Mase, K. Ohkubo and S. Fukuzumi, Chem. Commun., 51, 10226 (2015); https://doi.org/10.1039/C5CC03340C
S. Lin, C.S. Diercks, Y. Zhang, N. Kornienko, E.M. Nichols, Y. Zhao, A.R. Paris, D. Kim, P. Yang, O.M. Yaghi and C.J. Chang, Science, 349, 1208 (2015); https://doi.org/10.1126/science.aac8343
N. Elgrishi, M.B. Chambers and M. Fontecave, Chem. Sci., 6, 2522 (2015); https://doi.org/10.1039/C4SC03766A
S. Kapusta and N. Hackerman, J. Electrochem. Soc., 131, 1511 (1984); https://doi.org/10.1149/1.2115882
B.J. Fisher and R. Eisenberg, J. Am. Chem. Soc., 102, 7361 (1980); https://doi.org/10.1021/ja00544a035
M. Abdinejad, A. Seifitokaldani, C. Dao, E.H. Sargent, X.A. Zhang and H.B. Kraatz, ACS Appl. Energy Mater., 2, 1330 (2019); https://doi.org/10.1021/acsaem.8b01900
M. Wang, K. Torbensen, D. Salvatore, S. Ren, D. Joulié , F. Dumoulin, D. Mendoza, B. Lassalle-Kaiser, U. Isci, C.P. Berlinguette and M. Robert, Nat.Commun., 10, 3602 (2019); https://doi.org/10.1038/s41467-019-11542-w
A.G.M.M. Hossain, T. Nagaoka and K. Ogura, Electrochim. Acta, 41, 2773 (1996); https://doi.org/10.1016/0013-4686(96)00136-3
A.G.M.M. Hossain, T. Nagaoka and K. Ogura, Electrochim. Acta, 42, 2577 (1997); https://doi.org/10.1016/S0013-4686(96)00453-7
B.D. Steffey, C.J. Curtis and D.L. DuBois, Organometallics, 14, 4937 (1995); https://doi.org/10.1021/om00010a066
J.W. Raebiger, J.W. Turner, B.C. Noll, C.J. Curtis, A. Miedaner, B. Cox and D.L. DuBois, Organometallics, 25, 3345 (2006); https://doi.org/10.1021/om060228g
J.J. Walsh, C.L. Smith, G. Neri, G.F.S. Whitehead, C.M. Robertson and A.J. Cowan, Faraday Discuss., 183, 147 (2015); https://doi.org/10.1039/C5FD00071H
E.E. Benson, C.P. Kubiak, A.J. Sathrum and J.M. Smieja, Chem. Soc. Rev., 38, 89 (2009); https://doi.org/10.1039/B804323J
C.Z. Yuan, K. Liang, X. Xia, Z.K. Yang, Y. Jiang, T. Zhao, C. Lin, T. Cheang, S. Zhong and A. Xu, Catal. Sci. Technol., 9, 3669 (2019); https://doi.org/10.1039/C9CY00363K
C. Dai, Y. Qiu, Y. He, Q. Zhang, R. Liu, J. Du and C. Tao, New J. Chem., 43, 3493 (2019); https://doi.org/10.1039/C8NJ05205K
C. Ding, C. Feng, Y. Mei, F. Liu, H. Wang, M. Dupuis and C. Li, Appl. Catal. B, 268, 118391 (2020); https://doi.org/10.1016/j.apcatb.2019.118391
A. Dutta, I.Z. Montiel, R. Erni, K. Kiran, M. Rahaman, J. Drnec and P. Broekmann, Nano Energy, 68, 104331 (2020); https://doi.org/10.1016/j.nanoen.2019.104331
X.Z.X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang, W. Pan, Z. Jiang, H. Zheng, M. Lucero, H. Wang, G.E. Sterbinsky, Q. Ma, Y. Wang, Z. Feng, J. Li, H. Dai and Y. Liang, Nat. Energy, 5, 684 (2020); https://doi.org/10.1038/s41560-020-0667-9
Y. Tsubonouchi, D. Takahashi, M.R. Berber, E.A. Mohamed, Z.N. Zahran, A.M. Alenad, N.A. Althubiti and M. Yagi, Electrochim. Acta, 387, 138545 (2021); https://doi.org/10.1016/j.electacta.2021.138545
M. Rakowski Dubois and D.L. Dubois, Acc. Chem. Res., 42, 1974 (2009); https://doi.org/10.1021/ar900110c
J. Medina-Ramos, J.L. Dimeglio and J. Rosenthal, J. Am. Chem. Soc., 136, 8361 (2014); https://doi.org/10.1021/ja501923g
M. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, R.F. Klie, P. Kral, J. Abiade and A. Salehi-Khojin, Nat. Commun., 5, 1 (2014);https://doi.org/10.1038/ncomms5470
J.L. Dimeglio and J. Rosenthal, J. Am. Chem. Soc., 135, 8798 (2013); https://doi.org/10.1021/ja4033549
R. Kas, R. Kortlever, H. Yýlmaz, M. Koper and G. Mul, Chem. ElectroChem., 2, 354 (2015); https://doi.org/10.1002/celc.201402373
J. Qiao, P. Jiang, J. Liu and J. Zhang, Electrochem. Commun., 38, 8 (2014); https://doi.org/10.1016/j.elecom.2013.10.023
S. Zhang, P. Kang and T.J. Meyer, J. Am. Chem. Soc., 136, 1734 (2014); https://doi.org/10.1021/ja4113885
D. Kim, J. Resasco, Y. Yu, A.M. Asiri and P. Yang, Nat. Commun., 5, 4948 (2014); https://doi.org/10.1038/ncomms5948
W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson and S. Sun, J. Am. Chem. Soc., 135, 16833 (2013); https://doi.org/10.1021/ja409445p
C.S. Chen, A.D. Handoko, J.H. Wan, L. Ma, D. Ren and B.S. Yeo, Catal. Sci. Technol., 5, 161 (2015); https://doi.org/10.1039/C4CY00906A
D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi and B.S. Yeo, ACS Catal., 5, 2814 (2015); https://doi.org/10.1021/cs502128q
D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang and X. Bao, J. Am. Chem. Soc., 137, 4288 (2015); https://doi.org/10.1021/jacs.5b00046
P. Kang, S. Zhang, T.J. Meyer and M. Brookhart, Angew. Chem. Int. Ed., 53, 8709 (2014); https://doi.org/10.1002/anie.201310722
H. Zhao, Y. Zhang, B. Zhao, Y. Chang and Z. Li, Environ. Sci. Technol., 46, 5198 (2012); https://doi.org/10.1021/es300186f
M. Gangeri, S. Perathoner, S. Caudo, G. Centi, J. Amadou, D. Bégin, C. Pham-Huu, M.J. Ledoux, J.-P. Tessonnier and D.S. Su, Catal. Today, 143, 57 (2009); https://doi.org/10.1016/j.cattod.2008.11.001
S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song, R.L. House, J.T. Glass and T.J. Meyer, J. Am. Chem. Soc., 136, 7845 (2014); https://doi.org/10.1021/ja5031529
T. Yamamoto, D.A. Tryk, A. Fujishima and H. Ohata, Electrochim. Acta, 47, 3327 (2002); https://doi.org/10.1016/S0013-4686(02)00253-0
C. Delacourt, P.L. Ridgway, J.B. Kerr and J. Newman, J. Electrochem. Soc., 155, B42 (2008); https://doi.org/10.1149/1.2801871
S.R. Narayanan, B. Haines, J. Soler and T.I. Valdez, J. Electrochem. Soc., 158, A167 (2011); https://doi.org/10.1149/1.3526312
S. Sen, S.M. Brown, M. Leonard and F.R. Brushett, J. Appl. Electrochem., 49, 917 (2019); https://doi.org/10.1007/s10800-019-01332-z
P. Huang, J. Chen, P. Deng, F. Yang, J. Pan, K. Qi, H. Liu and B.Y. Xia, J. Catal., 381, 608 (2020); https://doi.org/10.1016/j.jcat.2019.12.008
M. Abdinejad, Z. Mirza, X.A. Zhang and H.B. Kraatz, ACS Sustain. Chem. Eng., 8, 1715 (2020); https://doi.org/10.1021/acssuschemeng.9b06837
J. Castelo-Quibén, A. Abdelwahab, M. Pérez-Cadenas, S. Morales-Torres, F.J. Maldonado-Hódar, F. Carrasco-Marín and A.F. Pérez-Cadenas, J. CO2 Util., 24, 240 (2018); https://doi.org/10.1016/j.jcou.2018.01.007
Y. Wang, H. Shen, K.J.T. Livi, D. Raciti, H. Zong, J. Gregg, M. Onadeko, Y. Wan, A. Watson and C. Wang, Nano Lett., 19, 8461 (2019); https://doi.org/10.1021/acs.nanolett.9b02748
Y. Hou, Y.L. Liang, P.C. Shi, Y.B. Huang and R. Cao, Appl. Catal. B, 271, 118929 (2020); https://doi.org/10.1016/j.apcatb.2020.118929
Z. Ma, X. Zhang, D. Wu, X. Han, L. Zhang, H. Wang, F. Xu, Z. Gao and K. Jiang, J. Colloid Interface Sci., 570, 31 (2020); https://doi.org/10.1016/j.jcis.2020.02.050
J.-M. Oh, C.C. Venters, C. Di, A.M. Pinto, L. Wan, I. Younis, Z. Cai, C. Arai, B.R. So, J. Duan and G. Dreyfuss, Nat. Commun., 11, 1 (2020); https://doi.org/10.1038/s41467-019-13993-7
J.H. Guo, X.Y. Zhang, X.Y. Dao and W.Y. Sun, ACS Appl. Nano Mater., 3, 2625 (2020); https://doi.org/10.1021/acsanm.0c00007
M.C.O. Monteiro, M.F. Philips, K.J.P. Schouten and M.T.M. Koper, Nat. Commun., 12, 4943 (2021); https://doi.org/10.1038/s41467-021-24936-6
C. Choi, T. Cheng, M. Flores Espinosa, H. Fei, X. Duan, W.A. Goddard III and Y. Huang, Adv. Mater., 31, 1805405 (2019); https://doi.org/10.1002/adma.201805405
M. Khalil, G.T.M. Kadja and M.M. Ilmi, J. Ind. Eng. Chem., 93, 78 (2021); https://doi.org/10.1016/j.jiec.2020.09.028
Z. Yin, G.T.R. Palmore and S. Sun, Trends Chem., 1, 739 (2019); https://doi.org/10.1016/j.trechm.2019.05.004
Q. Chen, P. Tsiakaras and P. Shen, Catalysts, 12, 1348 (2022); https://doi.org/10.3390/catal12111348
S.Y. Chae, S.Y. Lee and O.S. Joo, Electrochim. Acta, 303, 118 (2019); https://doi.org/10.1016/j.electacta.2019.02.046
W.-H. Cheng, M.H. Richter, I. Sullivan, D.M. Larson, C. Xiang, B.S. Brunschwig and H.A. Atwater, ACS Energy Lett., 5, 470 (2020); https://doi.org/10.1021/acsenergylett.9b02576
D. Yang, Q. Zhu, C. Chen, H. Liu, Z. Liu, Z. Zhao, X. Zhang, S. Liu and B. Han, Nat. Commun., 10, 1 (2019);https://doi.org/10.1038/s41467-019-08653-9
A.N. Frumkin, Trans. Faraday Soc., 55, 156 (1959); https://doi.org/10.1039/tf9595500156
Y. Hori, H. Konishi, T. Futamura, A. Murata, O. Koga, H. Sakurai and K. Oguma, Electrochim. Acta, 50, 5354 (2005); https://doi.org/10.1016/j.electacta.2005.03.015
Y. Hori, Modern Aspects of Electrochemistry, Springer, pp. 89-189 (2008).
Y. Hori, A. Murata and R. Takahashi, J. Chem. Soc. Faraday Trans. 1, Phys. Chem. Condens. Phases, 85, 2309 (1989);https://doi.org/10.1039/F19898502309
A. Murata and Y. Hori, Bull. Chem. Soc. Jpn., 64, 123 (1991); https://doi.org/10.1246/bcsj.64.123
M. König, J. Vaes, E. Klemm and D. Pant, iScience, 19, 135 (2019);https://doi.org/10.1016/j.isci.2019.07.014
G. Marcandalli, M.C.O. Monteiro, A. Goyal and M.T.M. Koper, Acc. Chem. Res., 55, 1900 (2022);https://doi.org/10.1021/acs.accounts.2c00080
M.M. de Salles Pupo and R. Kortleverm, ChemPhysChem, 20, 2926 (2019);https://doi.org/10.1002/cphc.201900680
X. Zhang, S.-X. Guo, K.A. Gandionco, A.M. Bond and J. Zhang, Mater. Today Adv., 7, 100074 (2020);https://doi.org/10.1016/j.mtadv.2020.100074
K. Wiranarongkorn, K. Eamsiri, Y.-S. Chen and A. Arpornwichanop, J. CO2 Utiliz., 71, 102477 (2023); https://doi.org/10.1016/j.jcou.2023.102477
S. Ikeda, T. Takagi and K. Ito, Bull. Chem. Soc. Jpn., 60, 2517 (1987); https://doi.org/10.1246/bcsj.60.2517
J.J. Carroll and A.E. Mather, J. Solution Chem., 21, 607 (1992); https://doi.org/10.1007/BF00650756
P. Stelmachowski, S. Sirotin, P. Bazin, F. Maugé and A. Travert, Phys. Chem. Chem. Phys., 15, 9335 (2013); https://doi.org/10.1039/c3cp51146d
R. Beya, B. Coasnea and C. Picard, PNAS, 118, e2102449118 (2021); https://doi.org/10.1073/pnas.2102449118
Y. Pei, H. Zhong and F. Jin, Ener. Sci. Eng., 9, 1012 (2021); https://doi.org/10.1002/ese3.935
A.S. Varela, Curr. Opin. Green Sustain. Chem., 26, 100371 (2020); https://doi.org/10.1016/j.cogsc.2020.100371
N. Gupta, M. Gattrell and B. MacDougall, J. Appl. Electrochem., 36, 161 (2006); https://doi.org/10.1007/s10800-005-9058-y
Y. Hori, A. Murata and Y. Yoshinami, J. Chem. Soc., Faraday Trans., 87, 125 (1991); https://doi.org/10.1039/ft9918700125
M.R. Thorson, K.I. Siil and P.J.A. Kenis, J. Electrochem. Soc., 160, F69 (2013); https://doi.org/10.1149/2.052301jes
B.M. Setterfield-Price and R.A.W. Dryfe, J. Electroanal. Chem., 730, 48 (2014); https://doi.org/10.1016/j.jelechem.2014.07.009
T.P. Silverstein, S.R. Kirk, S.C. Meyer and K.L. Holman, Lab. Tech. Biochem. Mol. Biol., 20, 5 (1990); https://doi.org/10.1016/S0075-7535(08)70092-5
Y. Hori, H. Wakebe, T. Tsukamoto and O. Koga, Electrochim. Acta, 39, 1833 (1994); https://doi.org/10.1016/0013-4686(94)85172-7
Y. Hori, R. Takahashi, Y. Yoshinami and A. Murata, J. Phys. Chem. B, 101, 7075 (1997); https://doi.org/10.1021/jp970284i
R.L. Cook, R.C. MacDuff and A.F. Sammells, J. Electrochem. Soc., 135, 1470 (1988); https://doi.org/10.1149/1.2096030
B. Innocent, D. Liaigre, D. Pasquier, F. Ropital, J.M. Léger and K.B. Kokoh, J. Appl. Electrochem., 39, 227 (2009); https://doi.org/10.1007/s10800-008-9658-4
M. Tomisaki, S. Kasahara, K. Natsui, N. Ikemiya and Y. Einaga, J. Am. Chem. Soc., 141, 7414 (2019); https://doi.org/10.1021/jacs.9b01773
C. Amatore and J.M. Saveant, J. Am. Chem. Soc., 103, 5021 (1981); https://doi.org/10.1021/ja00407a008
L.L. Snuffin, L.W. Whaley and L. Yu, J. Electrochem. Soc., 158, F155 (2011); https://doi.org/10.1149/1.3606487
B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple, P.J.A. Kenis and R.I. Masel, Science, 334, 643 (2011); https://doi.org/10.1126/science.1209786
C.W. Machan, C.J. Stanton III, J.E. Vandezande, G.F. Majetich, H.F. Schaefer III, C.P. Kubiak and J. Agarwal, Inorg. Chem., 54, 8849 (2015); https://doi.org/10.1021/acs.inorgchem.5b01715
S. Shironita, K. Karasuda, M. Sato and M. Umeda, J. Power Sources, 228, 68 (2013); https://doi.org/10.1016/j.jpowsour.2012.11.097
S. Shironita, K. Karasuda, K. Sato and M. Umeda, J. Power Sources, 240, 404 (2013); https://doi.org/10.1016/j.jpowsour.2013.04.034
D.W. Dewulf and A.J. Bard, Catal. Lett., 1, 73 (1988); https://doi.org/10.1007/BF00765357
S. Komatsu, M. Tanaka, A. Okumura and A. Kungi, Electrochim. Acta, 40, 745 (1995); https://doi.org/10.1016/0013-4686(94)00325-U
L.M. Aeshala, R.G. Uppaluri and A. Verma, J. CO2 Util., 3-4, 49 (2013); https://doi.org/10.1016/j.jcou.2013.09.004
L.M. Aeshala, S.U. Rahman and A. Verma, Sep. Purif. Technol., 94, 131 (2012); https://doi.org/10.1016/j.seppur.2011.12.030
K. Ogura, C.T. Migita and T. Nagaoka, J. Mol. Catal., 56, 276 (1989); https://doi.org/10.1016/0304-5102(89)80191-9
Y. Nishimura, D. Yoshida, M. Mizuhata, K. Asaka, K. Oguro and H. Takenaka, Energy Convers. Manage., 36, 629 (1995); https://doi.org/10.1016/0196-8904(95)00084-Q
K. Subramanian, K. Asokan, D. Jeevarathinam and M. Chandrasekaran, J. Appl. Electrochem., 37, 255 (2007); https://doi.org/10.1007/s10800-006-9252-6
J.A. Nighswander, N. Kalogerakis and A.K. Mehrotra, J. Chem. Eng. Data, 34, 355 (1989); https://doi.org/10.1021/je00057a027
K. Hara, A. Tsuneto, A. Kudo and T. Sakata, J. Electrochem. Soc., 141, 2097 (1994); https://doi.org/10.1149/1.2055067
K. Hara, A. Kudo and T. Sakata, J. Electroanal. Chem., 421, 1 (1997); https://doi.org/10.1016/S0022-0728(96)01028-5
N. Furuya, T. Yamazaki and M. Shibata, J. Electroanal. Chem., 431, 39 (1997); https://doi.org/10.1016/S0022-0728(97)00159-9
N. Sonoyama, M. Kirii and T. Sakata, Electrochem. Commun., 1, 213 (1999); https://doi.org/10.1016/S1388-2481(99)00041-7
R. Aydin and F. Köleli, J. Electroanal. Chem., 535, 107 (2002); https://doi.org/10.1016/S0022-0728(02)01151-8
Y. Hori, K. Kikuchi, A. Murata and S. Suzuki, Chem. Lett., 15, 897 (1986); https://doi.org/10.1246/cl.1986.897
S. Kaneco, N. Hiei, Y. Xing, H. Katsumata, H. Ohnishi, T. Suzuki and K. Ohta, Electrochim. Acta, 48, 51 (2002); https://doi.org/10.1016/S0013-4686(02)00550-9
G.M. Brisard, A.P.M. Camargo, F.C. Nart and T. Iwasita, Electrochem. Commun., 3, 603 (2001); https://doi.org/10.1016/S1388-2481(01)00223-5