Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Phytochemicals Profiling of Blue-Green Alga Nostoc sp. HANL07: Antioxidant, Antibacterial Activity and GC-MS Analysis
Corresponding Author(s) : Ashutosh Tripathi
Asian Journal of Chemistry,
Vol. 35 No. 3 (2023): Vol 35 Issue 3, 2023
Abstract
In recent years, studies on phytochemicals, antioxidants, and antibiotics using blue green algae from harsh environments has become increasingly prevalent. The search for novel bioactive molecules exhibiting diverse biological activity is one of the most important strategies for addressing the issue of rising concerns regarding bacterial antibiotic resistance. In present study, the phytochemicals, antioxidant potentiality and antibacterial assessment of organic solvent extracts of blue-green alga isolated from Naini lake water were characterized. From the mass culture of alga, extracts were prepared in MeOH, EtOH, acetone, AcOEt, hexane and DCM and antioxidant potential and antibacterial properties were studied against multiple antibiotic-resistant E. coli, P. aeruginosa, P. fluorescence, S. enteric, S. typhimurium and Sh. dysenteriae. The 16S rRNA gene sequence analysis and phylogenetic tree revealed that blue-green algal isolate belongs to Nostoc sp. A higher extraction yield (5.3%) was recorded for MeOH extract as compared to other solvent extracts. Alkaloids, flavonoids and phenols were present in all extracts. DPPH free radical scavenging activity was determined using various concentrations of extracts (1 to 2048 μg mL-1). Maximum % inhibition (free radical scavenging activity) was observed in MeOH extract (35.23 ± 0.12). The methanolic extract was found to be inhibitory against P. aeruginosa and P. fluorescence. 2048 μg mL-1 MIC value was recorded against P. aeruginosa. In GC-MS profiling, a total of 8 significant peaks showing various compounds were identified among the 21 peaks. Oxirane hexadecyl was reported as the main components in this compound. The results showed that Nostoc sp. HANL07 is a good source of antioxidant and antibacterial compounds and could be used for further study in the field of drug discovery.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Martínez-Francés and C. Escudero-Oñate, Microalgae Biotechnol., 6, 104 (2018); https://doi.org/10.5772/intechopen.74043
- N. Padmini, A.A.K. Ajilda, P. Prabakaran, N. Sivakumar and G. Selvakumar, J. Appl. Microbiol., 130, 50 (2021); https://doi.org/10.1111/jam.14760
- U. Singh, P. Singh, A.K. Singh, Laxmi, D. Kumar, S.K. Shrivastava, R. Tilak and R.K. Asthana, Algal Res., 54, 102215 (2021); https://doi.org/10.1016/j.algal.2021.102215
- WHO, Comprehensive Review of the WHO Global Action Plan on Antimicrobial Resistance, vol. 1, pp 112 (2020).
- S.A. McEwen and P.J. Collignon, Microbiol. Spectr., 6, 2 (2018); https://doi.org/10.1128/microbiolspec.ARBA-0009-2017
- A.G. Atanasov, S.B. Zotchev, V.M. Dirsch and C.T. Supuran, Nat. Rev. Drug Discov., 20, 200 (2021); https://doi.org/10.1038/s41573-020-00114-z
- S. Bernardini, A. Tiezzi, V. Laghezza Masci and E. Ovidi, Nat. Prod. Res., 32, 1926 (2018); https://doi.org/10.1080/14786419.2017.1356838
- E.E. Shawer, S.Z. Sabae, A.D. El-Gamal and H.E. Elsaied, Egypt. J. Chem., 65, 723 (2022); https://doi.org/10.21608/EJCHEM.2022.127880.5681
- D. Strieth, S. Lenz and R. Ulber, MicrobiologyOpen, 11, e1268 (2022); https://doi.org/10.1002/mbo3.1268
- H. Righini, O. Francioso, A.M. Quintana and R. Roberti, Horticulturae, 8, 58 (2022); https://doi.org/10.3390/horticulturae8010058
- B. Pradhan, R. Nayak, S. Patra, P.P. Bhuyan, S.R. Dash, J.-S. Ki, S.P. Adhikary, A. Ragusa and M. Jena, Antioxidants, 11, 354 (2022); https://doi.org/10.3390/antiox11020354
- L.-E. Petersen, M.Y. Kellermann and P.J. Schupp, in Eds.: S. Jungblut, V. Liebich and M. Bode-Dalby, Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology, In: YOUMARES 9 - The Oceans: Our Research, Our Future, Springer, p. 159 (2020).
- J. Demay, C. Bernard, A. Reinhardt and B. Marie, Mar. Drugs, 17, 320 (2019); https://doi.org/10.3390/md17060320
- M. Jaspars and L.A. Lawton, Curr. Opin. Drug Discov. Devel., 1, 77 (1998).
- V. Gogineni and M.T. Hamann, Biochim. Biophys. Acta Gen., 1862, 81 (2018); https://doi.org/10.1016/j.bbagen.2017.08.014
- D.A. Marrez, Y.Y. Sultan and M.A.-E. Embaby, Int. J. Pharmacol., 13, 1010 (2017); https://doi.org/10.3923/ijp.2017.1010.1019
- P. Nainangu, A.P.M. Antonyraj, K. Subramanian, S. Kaliyaperumal, S. Gopal, P.S. Renuka and A.A. Wilson, Biocatal. Agric. Biotechnol., 29, 101772 (2020); https://doi.org/10.1016/j.bcab.2020.101772
- D.A. Marrez, Y.Y. Sultan, M.M. Naguib and A.M. Higazy, Biointerface Res. Appl. Chem., 12, 961 (2022); https://doi.org/10.33263/BRIAC121.961977
- B. Nowruzi, R.A. Khavari-Nejad, K. Sivonen, B. Kazemi, F. Najafi and T. Nejadsattari, Algae, 27, 303 (2012); https://doi.org/10.4490/algae.2012.27.4.303
- V. Sankarapandian, K. Nitharsan, K. Parangusadoss, P. Gangadaran, P. Ramani, B.A. Venmathi Maran and M.P. Jogalekar, BioTech, 11, 13 (2022); https://doi.org/10.3390/biotech11020013
- P. Kaushik and A. Chauhan, Vegetos, 21, 77 (2008).
- R.S. Mane and B. Chakraborty, J. Algal Biomass Util., 9, 38 (2018).
- M. Farasat, R.-A. Khavari-Nejad, S.M.B. Nabavi and F. Namjooyan, Int. J. Pharm. Res., 13, 163 (2014).
- R. Chatterjee, D. Singh, S. Tripathi, A. Chauhan, M.L. Aggarwal and A. Varma, Nat. Environ. Pollut. Technol., 20, 569 (2021); https://doi.org/10.46488/NEPT.2021.v20i02.013
- NCCL Standards, Methods for Dilution and Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, NCCLS Approved Standard M7-A4, Wayne, PA (1997).
- P. Rath, D. Prakash, A. Ranjan, A. Chauhan, T. Jindal, S. Alamri, T. Alamri, S. Harakeh and S. Haque, Biotechnol. Genet. Eng. Rev., (2023); https://doi.org/10.1080/02648725.2022.2162236
References
E. Martínez-Francés and C. Escudero-Oñate, Microalgae Biotechnol., 6, 104 (2018); https://doi.org/10.5772/intechopen.74043
N. Padmini, A.A.K. Ajilda, P. Prabakaran, N. Sivakumar and G. Selvakumar, J. Appl. Microbiol., 130, 50 (2021); https://doi.org/10.1111/jam.14760
U. Singh, P. Singh, A.K. Singh, Laxmi, D. Kumar, S.K. Shrivastava, R. Tilak and R.K. Asthana, Algal Res., 54, 102215 (2021); https://doi.org/10.1016/j.algal.2021.102215
WHO, Comprehensive Review of the WHO Global Action Plan on Antimicrobial Resistance, vol. 1, pp 112 (2020).
S.A. McEwen and P.J. Collignon, Microbiol. Spectr., 6, 2 (2018); https://doi.org/10.1128/microbiolspec.ARBA-0009-2017
A.G. Atanasov, S.B. Zotchev, V.M. Dirsch and C.T. Supuran, Nat. Rev. Drug Discov., 20, 200 (2021); https://doi.org/10.1038/s41573-020-00114-z
S. Bernardini, A. Tiezzi, V. Laghezza Masci and E. Ovidi, Nat. Prod. Res., 32, 1926 (2018); https://doi.org/10.1080/14786419.2017.1356838
E.E. Shawer, S.Z. Sabae, A.D. El-Gamal and H.E. Elsaied, Egypt. J. Chem., 65, 723 (2022); https://doi.org/10.21608/EJCHEM.2022.127880.5681
D. Strieth, S. Lenz and R. Ulber, MicrobiologyOpen, 11, e1268 (2022); https://doi.org/10.1002/mbo3.1268
H. Righini, O. Francioso, A.M. Quintana and R. Roberti, Horticulturae, 8, 58 (2022); https://doi.org/10.3390/horticulturae8010058
B. Pradhan, R. Nayak, S. Patra, P.P. Bhuyan, S.R. Dash, J.-S. Ki, S.P. Adhikary, A. Ragusa and M. Jena, Antioxidants, 11, 354 (2022); https://doi.org/10.3390/antiox11020354
L.-E. Petersen, M.Y. Kellermann and P.J. Schupp, in Eds.: S. Jungblut, V. Liebich and M. Bode-Dalby, Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology, In: YOUMARES 9 - The Oceans: Our Research, Our Future, Springer, p. 159 (2020).
J. Demay, C. Bernard, A. Reinhardt and B. Marie, Mar. Drugs, 17, 320 (2019); https://doi.org/10.3390/md17060320
M. Jaspars and L.A. Lawton, Curr. Opin. Drug Discov. Devel., 1, 77 (1998).
V. Gogineni and M.T. Hamann, Biochim. Biophys. Acta Gen., 1862, 81 (2018); https://doi.org/10.1016/j.bbagen.2017.08.014
D.A. Marrez, Y.Y. Sultan and M.A.-E. Embaby, Int. J. Pharmacol., 13, 1010 (2017); https://doi.org/10.3923/ijp.2017.1010.1019
P. Nainangu, A.P.M. Antonyraj, K. Subramanian, S. Kaliyaperumal, S. Gopal, P.S. Renuka and A.A. Wilson, Biocatal. Agric. Biotechnol., 29, 101772 (2020); https://doi.org/10.1016/j.bcab.2020.101772
D.A. Marrez, Y.Y. Sultan, M.M. Naguib and A.M. Higazy, Biointerface Res. Appl. Chem., 12, 961 (2022); https://doi.org/10.33263/BRIAC121.961977
B. Nowruzi, R.A. Khavari-Nejad, K. Sivonen, B. Kazemi, F. Najafi and T. Nejadsattari, Algae, 27, 303 (2012); https://doi.org/10.4490/algae.2012.27.4.303
V. Sankarapandian, K. Nitharsan, K. Parangusadoss, P. Gangadaran, P. Ramani, B.A. Venmathi Maran and M.P. Jogalekar, BioTech, 11, 13 (2022); https://doi.org/10.3390/biotech11020013
P. Kaushik and A. Chauhan, Vegetos, 21, 77 (2008).
R.S. Mane and B. Chakraborty, J. Algal Biomass Util., 9, 38 (2018).
M. Farasat, R.-A. Khavari-Nejad, S.M.B. Nabavi and F. Namjooyan, Int. J. Pharm. Res., 13, 163 (2014).
R. Chatterjee, D. Singh, S. Tripathi, A. Chauhan, M.L. Aggarwal and A. Varma, Nat. Environ. Pollut. Technol., 20, 569 (2021); https://doi.org/10.46488/NEPT.2021.v20i02.013
NCCL Standards, Methods for Dilution and Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, NCCLS Approved Standard M7-A4, Wayne, PA (1997).
P. Rath, D. Prakash, A. Ranjan, A. Chauhan, T. Jindal, S. Alamri, T. Alamri, S. Harakeh and S. Haque, Biotechnol. Genet. Eng. Rev., (2023); https://doi.org/10.1080/02648725.2022.2162236