Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Optimized Geometry, NBO, MEP, Docking Analysis and Antimicrobial Activity of (2R,3R)-Butanediol Bis(methanesulfonate)
Corresponding Author(s) : P.R. Babila
Asian Journal of Chemistry,
Vol. 35 No. 3 (2023): Vol 35 Issue 3, 2023
Abstract
In this work, quantum chemical computations using density functional theory (DFT) with the wB97XD basis functional were used to characterize (2R,3R)-butanediol bis(methanesulfonate) (BBM). Natural bond orbital analysis was used to examine the electronic chemical stability of the BBM induced by hyperconjugative interactions and charge delocalization. The compound is chemically active and the atomic sites prone to electrophilic/nucleophilic attack were recognized form molecular electrostatic potential (MEP) surface. Molecular docking studies were on four (Candida albicans, Aspergillus niger, Bacillus cereus and Pseudomonas aeruginosa) organisms PDB antibacterial proteins and higher binding energy and lower inhibition constants of the docked complex were endorsed the inhibition activity of BBM against the 5DXF, 1UKC, 4NQ6 and 4LJH targets. In vitro analysis had also performed with two antimicrobial pathogens viz. Candida sp. and E. coli.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- U. Salar, K.M. Khan, S.A. Ejaz, A. Hameed, M. Al-Rashida, S. Perveen, M.N. Tahir, J. Iqbal and M. Taha, Lett. Drug Design Discov., 16, 256 (2019); https://doi.org/10.2174/1570180815666180327125738
- R. Mckenna, S. Neidle, R. Kuroda and B.W. Fox, ActaCryst., C45, 311 (1989); https://doi.org/10.1107/S0108270188011291
- T. Karthick and P. Tandon, J. Mol. Model., 22, 142 (2016); https://doi.org/10.1007/s00894-016-3015-z
- V. Kumar, G. Jain, S. Kishor and L.M. Ramaniah, Comput. Theor. Chem., 968, 18 (2011); https://doi.org/10.1016/j.comptc.2011.04.034
- I. Novak and B. Kovac, Chem. Phys. Lett., 498, 240 (2010); https://doi.org/10.1016/j.cplett.2010.08.073
- T. Iwamoto, Y. Hiraku, S. Oikawa, H. Mizutani, M. Kojima and S. Kawanishi, Cancer Sci., 95, 454 (2004); https://doi.org/10.1111/j.1349-7006.2004.tb03231.x
- T. Karthick, P. Tandon, S. Singh, P. Agarwal and A. Srivastava, Spectrochim. Acta A Mol. Biomol. Spectrosc., 173, 390 (2017); https://doi.org/10.1016/j.saa.2016.09.031
- M. Beytur and I. Avinca, Heterocycl. Commun., 27, 1 (2021); https://doi.org/10.1515/hc-2020-0118
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT (2016).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- R. Dennington, T. Keith and J. Millam, GaussView, Semichem Inc., Shawnee Mission, KS, Version 5 (2009).
- F. Biegler-Konig, J. Schonbohm and D. Bayles, J. Comput. Chem., 22, 545 (2001); https://doi.org/10.1002/1096-987X(20010415)22:5<545::AIDJCC1027>3.0.CO;2-Y
- T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
- Y.S. Beegum, S. Mary, Y.S. Mary, R. Thomas, S. Armakovic, S.J. Armakovic, J. Zitko, M. Dolezal and C. van Alsenoy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 24, 117414 (2019); https://doi.org/10.1016/j.saa.2019.117414
- F. Weinhold and E.D. Glendening, J. Phys. Chem. A, 122, 724 (2018); https://doi.org/10.1021/acs.jpca.7b08165
- D. Nasipuri, Stereochemistry of Organic Compounds: Principles and Applications, New Age International Publications: New Delhi, India, Edn. 2 (2005).
- V. Balachandran, S. Rajeswari and S. Lalitha, J. Mol. Struct., 1007, 63 (2012); https://doi.org/10.1016/j.molstruc.2011.10.014
- S.J.J. Mary, M.U.M. Siddique, S. Pradhan, V. Jayaprakash and C. James, Spectrochim. Acta A Mol. Biomol. Spectrosc., 244, 118825 (2021); https://doi.org/10.1016/j.saa.2020.118825
- A.A. Bunaciu and H.Y. Aboul-Enein, Encyclopedia of Spectroscopy and Spectrometry, pp. 575-581 (2017).
- P. Agarwal, S. Bee, A. Gupta, P. Tandon, V.K. Rastogi, S. Mishra and P. Rawat, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 464 (2014); https://doi.org/10.1016/j.saa.2013.10.104
- P. Politzer and R.G. Parr, J. Chem. Phys., 61, 4258 (1974); https://doi.org/10.1063/1.1681726
- P. Politzer, M.C. Concha and J.S. Murray, Int. J. Quantum Chem., 80, 184 (2000); https://doi.org/10.1002/1097-461X(2000)80:2<184::AIDQUA12>3.0.CO;2-O
- B. Kramer, M. Rarey and T. Lengauer, Proteins, 37, 228 (1999); https://doi.org/10.1002/(SICI)1097-0134(19991101)37:2<228::AIDPROT8>3.0.CO;2-8
- S. Parveen, M.A. Al-Alshaikh, C.Y. Panicker, A.A. El-Emam, B. Narayana, V.V. Saliyan, B.K. Sarojini and C. Van Alsenoy, J. Mol. Struct., 1112, 136 (2016); https://doi.org/10.1016/j.molstruc.2016.02.018
References
U. Salar, K.M. Khan, S.A. Ejaz, A. Hameed, M. Al-Rashida, S. Perveen, M.N. Tahir, J. Iqbal and M. Taha, Lett. Drug Design Discov., 16, 256 (2019); https://doi.org/10.2174/1570180815666180327125738
R. Mckenna, S. Neidle, R. Kuroda and B.W. Fox, ActaCryst., C45, 311 (1989); https://doi.org/10.1107/S0108270188011291
T. Karthick and P. Tandon, J. Mol. Model., 22, 142 (2016); https://doi.org/10.1007/s00894-016-3015-z
V. Kumar, G. Jain, S. Kishor and L.M. Ramaniah, Comput. Theor. Chem., 968, 18 (2011); https://doi.org/10.1016/j.comptc.2011.04.034
I. Novak and B. Kovac, Chem. Phys. Lett., 498, 240 (2010); https://doi.org/10.1016/j.cplett.2010.08.073
T. Iwamoto, Y. Hiraku, S. Oikawa, H. Mizutani, M. Kojima and S. Kawanishi, Cancer Sci., 95, 454 (2004); https://doi.org/10.1111/j.1349-7006.2004.tb03231.x
T. Karthick, P. Tandon, S. Singh, P. Agarwal and A. Srivastava, Spectrochim. Acta A Mol. Biomol. Spectrosc., 173, 390 (2017); https://doi.org/10.1016/j.saa.2016.09.031
M. Beytur and I. Avinca, Heterocycl. Commun., 27, 1 (2021); https://doi.org/10.1515/hc-2020-0118
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT (2016).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
R. Dennington, T. Keith and J. Millam, GaussView, Semichem Inc., Shawnee Mission, KS, Version 5 (2009).
F. Biegler-Konig, J. Schonbohm and D. Bayles, J. Comput. Chem., 22, 545 (2001); https://doi.org/10.1002/1096-987X(20010415)22:5<545::AIDJCC1027>3.0.CO;2-Y
T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
Y.S. Beegum, S. Mary, Y.S. Mary, R. Thomas, S. Armakovic, S.J. Armakovic, J. Zitko, M. Dolezal and C. van Alsenoy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 24, 117414 (2019); https://doi.org/10.1016/j.saa.2019.117414
F. Weinhold and E.D. Glendening, J. Phys. Chem. A, 122, 724 (2018); https://doi.org/10.1021/acs.jpca.7b08165
D. Nasipuri, Stereochemistry of Organic Compounds: Principles and Applications, New Age International Publications: New Delhi, India, Edn. 2 (2005).
V. Balachandran, S. Rajeswari and S. Lalitha, J. Mol. Struct., 1007, 63 (2012); https://doi.org/10.1016/j.molstruc.2011.10.014
S.J.J. Mary, M.U.M. Siddique, S. Pradhan, V. Jayaprakash and C. James, Spectrochim. Acta A Mol. Biomol. Spectrosc., 244, 118825 (2021); https://doi.org/10.1016/j.saa.2020.118825
A.A. Bunaciu and H.Y. Aboul-Enein, Encyclopedia of Spectroscopy and Spectrometry, pp. 575-581 (2017).
P. Agarwal, S. Bee, A. Gupta, P. Tandon, V.K. Rastogi, S. Mishra and P. Rawat, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 464 (2014); https://doi.org/10.1016/j.saa.2013.10.104
P. Politzer and R.G. Parr, J. Chem. Phys., 61, 4258 (1974); https://doi.org/10.1063/1.1681726
P. Politzer, M.C. Concha and J.S. Murray, Int. J. Quantum Chem., 80, 184 (2000); https://doi.org/10.1002/1097-461X(2000)80:2<184::AIDQUA12>3.0.CO;2-O
B. Kramer, M. Rarey and T. Lengauer, Proteins, 37, 228 (1999); https://doi.org/10.1002/(SICI)1097-0134(19991101)37:2<228::AIDPROT8>3.0.CO;2-8
S. Parveen, M.A. Al-Alshaikh, C.Y. Panicker, A.A. El-Emam, B. Narayana, V.V. Saliyan, B.K. Sarojini and C. Van Alsenoy, J. Mol. Struct., 1112, 136 (2016); https://doi.org/10.1016/j.molstruc.2016.02.018