Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Elsholtzia ciliata Leaf Extract Mediated Silver Nanoparticles: Synthesis and their Antioxidant, Antidiabetic and Anticancer Activities
Corresponding Author(s) : R.K. London Singh
Asian Journal of Chemistry,
Vol. 35 No. 3 (2023): Vol 35 Issue 3, 2023
Abstract
This study deals with silver nanoparticle synthesis utilizing the leaf extract of the medicinal plant Elsholtzia ciliata and evaluated its antioxidant, antidiabetic and anticancer activities. The characterization of the synthesized E. ciliata silver nanoparticles (Ec-AgNPs) were done by using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The formation of face-centred cubic silver nanocrystals was confirmed by XRD data. During the formation of Ec-AgNPs, the phytochemicals present in the leaf extract act as reducing and capping agents as confirmed by FTIR spectra. The zeta potential and polydispersity index values from DLS measurements were -16.4 mV and 0.261, respectively. The high content of flavonoids, phenols, tannins and coumarins was confirmed by the phytochemical studies of the plant extract. The antioxidant activity was shown by the synthesized Ec-AgNPs. The inhibition of carbohydrate digestive enzyme α-glucosidase with IC50 values of 29.32 ± 0.42 μg/mL was found for the biosynthesized silver nanoparticles. MTT assay was performed on A549, HCT116 and HeLa Cell lines for evaluation of the antiproliferative activities of the Ec-AgNPs and have shown IC50 values of 189 ± 8.7, 192.5 ± 0.5 and 51.7 ± 7.8 μg/mL in A549, HCT116 and HeLa Cell lines, respectively. These findings proved that the biosynthesized Ec-AgNPs had good antioxidant, antidiabetic and anticancer activities and hence can be a competent candidate for an antioxidant, antidiabetic and anticancer agents in the pharmaceutical sector.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.A. Widatalla, L.F. Yassin, A.A. Alrasheid, S.A. Rahman Ahmed, M.O. Widdatallah, S.H. Eltilib and A.A. Mohamed, Nanoscale Adv., 4, 911 (2022); https://doi.org/10.1039/D1NA00509J
- A.M. Elgorban, A.E.R.M. El-Samawaty, M.A. Yassin, S.R. Sayed, S.F. Adil, K.M. Elhindi, M. Bakri and M. Khan, Biotechnol. Biotechnol. Equip., 30, 56 (2016); https://doi.org/10.1080/13102818.2015.1106339
- K. Balan, W. Qing, Y. Wang, X. Liu, T. Palvannan, Y. Wang, F. Ma and Y. Zhang, RSC Adv., 6, 40162 (2016); https://doi.org/10.1039/C5RA24391B
- P. Roy, B. Das, A. Mohanty and S. Mohapatra, Appl. Nanosci., 7, 843 (2017); https://doi.org/10.1007/s13204-017-0621-8
- A.A. Kajani, A.K. Bordbar, S.H. Zarkesh Esfahani, A.R. Khosropour and A. Razmjou, RSC Adv., 4, 61394 (2014); https://doi.org/10.1039/C4RA08758E
- M. Nishita, S.-Y. Park, T. Nishio, K. Kamizaki, Z.C. Wang, K. Tamada, T. Takumi, R. Hashimoto, H. Otani, G.J. Pazour, V.W. Hsu and Y. Minami, Sci. Rep., 7, 1 (2017); https://doi.org/10.1038/s41598-016-0028-x
- S. Medda, A. Hajra, U. Dey, P. Bose and N.K. Mondal, Appl. Nanosci., 5, 875 (2015); https://doi.org/10.1007/s13204-014-0387-1
- L. Pudziuvelyte, M. Stankevicius, A. Maruska, O. Ragazinskiene, V. Petrikaite, G. Draksiene and J. Bernatoniene, Ind. Crops Prod., 107, 90 (2017); https://doi.org/10.1016/j.indcrop.2017.05.040
- H.H. Kim, J.S. Yoo, H.S. Lee, T.K. Kwon, T.Y. Shin and S.H. Kim, Exp. Biol. Med., 236, 1070 (2011); https://doi.org/10.1258/ebm.2011.011017
- M.S. Choi, B. Choi, S.H. Kim, S.C. Pak, C.H. Jang, Y.-W. Chin, Y.-M. Kim, D. Kim, S. Jeon and B.-S. Koo, J. Med. Food, 18, 1112 (2015); https://doi.org/10.1089/jmf.2015.3475
- Y. Andriani, N.M. Ramli, D.F. Syamsumir, M.N.I. Kassim, J. Jaafar, N.A. Aziz, L. Marlina, N.S. Musa and H. Mohamad, Arab. J. Chem., 12, 3555 (2019); https://doi.org/10.1016/j.arabjc.2015.11.003
- R. Amorati and L. Valgimigli, J. Agric. Food Chem., 66, 3324 (2018); https://doi.org/10.1021/acs.jafc.8b01079
- A. Floegel, D.O. Kim, S.J. Chung, S.I. Koo and O.K. Chun, J. Food Compos. Anal., 24, 1043 (2011); https://doi.org/10.1016/j.jfca.2011.01.008
- F. Denizot and R. Lang, J. Immunol. Methods, 89, 271 (1986); https://doi.org/10.1016/0022-1759(86)90368-6
- P. Mulvaney, Langmuir, 12, 788 (1996); https://doi.org/10.1021/la9502711
- V.S. Kotakadi, S.A. Gaddam, S.K. Venkata and D.V.R. Sai Gopal, Appl. Nanosci., 5, 847 (2015); https://doi.org/10.1007/s13204-014-0381-7
- G. Singhal, R. Bhavesh, K. Kasariya, A.R. Sharma and R.P. Singh, J. Nanopart. Res., 13, 2981 (2011); https://doi.org/10.1007/s11051-010-0193-y
- A.L. Patterson, Phys. Rev., 56, 978 (1939); https://doi.org/10.1103/PhysRev.56.978
- S. Mickymaray, Biomolecules, 9, 662 (2019); https://doi.org/10.3390/biom9110662
- K. Logaranjan, A.J. Raiza, S.C.B. Gopinath, Y. Chen and K. Pandian, Nanoscale Res. Lett., 11, 520 (2016); https://doi.org/10.1186/s11671-016-1725-x
- E.-Y. Ahn, H. Jin and Y. Park, Mater. Sci. Eng. C, 101, 204 (2019); https://doi.org/10.1016/j.msec.2019.03.095
- R. Sankar, A. Karthik, A. Prabu, S. Karthik, K.S. Shivashangari and V. Ravikumar, Colloids Surf. B Biointerfaces, 108, 80 (2013); https://doi.org/10.1016/j.colsurfb.2013.02.033
- S. Raj, S. Chand Mali and R. Trivedi, Biochem. Biophys. Res. Commun., 503, 2814 (2018); https://doi.org/10.1016/j.bbrc.2018.08.045
- L. Shi, W. Zhao, Z. Yang, V. Subbiah and H.A.R. Suleria, Environ. Sci. Pollut. Res., 29, 81112 (2022); https://doi.org/10.1007/s11356-022-23337-6
- A.K. Jha, K. Prasad, K. Prasad and A.R. Kulkarni, Colloids Surf. B Biointerfaces, 73, 219 (2009); https://doi.org/10.1016/j.colsurfb.2009.05.018
- R.G. Saratale, G. Benelli, G. Kumar, D.S. Kim and G.D. Saratale, Environ. Sci. Pollut. Res. Int., 25, 10392 (2018); https://doi.org/10.1007/s11356-017-9581-5
- K. Jyoti, M. Baunthiyal and A. Singh, J. Radiat. Res. Appl. Sci., 9, 217 (2016); https://doi.org/10.1016/j.jrras.2015.10.002
- C.C. Doan, T.L. Le, N.Q.C. Ho, T.H.L. La, V.C. Nguyen, V.D. Le, T.P.T. Nguyen and N.S. Hoang, J. Ethnopharmacol., 284, 114803 (2022); https://doi.org/10.1016/j.jep.2021.114803
References
H.A. Widatalla, L.F. Yassin, A.A. Alrasheid, S.A. Rahman Ahmed, M.O. Widdatallah, S.H. Eltilib and A.A. Mohamed, Nanoscale Adv., 4, 911 (2022); https://doi.org/10.1039/D1NA00509J
A.M. Elgorban, A.E.R.M. El-Samawaty, M.A. Yassin, S.R. Sayed, S.F. Adil, K.M. Elhindi, M. Bakri and M. Khan, Biotechnol. Biotechnol. Equip., 30, 56 (2016); https://doi.org/10.1080/13102818.2015.1106339
K. Balan, W. Qing, Y. Wang, X. Liu, T. Palvannan, Y. Wang, F. Ma and Y. Zhang, RSC Adv., 6, 40162 (2016); https://doi.org/10.1039/C5RA24391B
P. Roy, B. Das, A. Mohanty and S. Mohapatra, Appl. Nanosci., 7, 843 (2017); https://doi.org/10.1007/s13204-017-0621-8
A.A. Kajani, A.K. Bordbar, S.H. Zarkesh Esfahani, A.R. Khosropour and A. Razmjou, RSC Adv., 4, 61394 (2014); https://doi.org/10.1039/C4RA08758E
M. Nishita, S.-Y. Park, T. Nishio, K. Kamizaki, Z.C. Wang, K. Tamada, T. Takumi, R. Hashimoto, H. Otani, G.J. Pazour, V.W. Hsu and Y. Minami, Sci. Rep., 7, 1 (2017); https://doi.org/10.1038/s41598-016-0028-x
S. Medda, A. Hajra, U. Dey, P. Bose and N.K. Mondal, Appl. Nanosci., 5, 875 (2015); https://doi.org/10.1007/s13204-014-0387-1
L. Pudziuvelyte, M. Stankevicius, A. Maruska, O. Ragazinskiene, V. Petrikaite, G. Draksiene and J. Bernatoniene, Ind. Crops Prod., 107, 90 (2017); https://doi.org/10.1016/j.indcrop.2017.05.040
H.H. Kim, J.S. Yoo, H.S. Lee, T.K. Kwon, T.Y. Shin and S.H. Kim, Exp. Biol. Med., 236, 1070 (2011); https://doi.org/10.1258/ebm.2011.011017
M.S. Choi, B. Choi, S.H. Kim, S.C. Pak, C.H. Jang, Y.-W. Chin, Y.-M. Kim, D. Kim, S. Jeon and B.-S. Koo, J. Med. Food, 18, 1112 (2015); https://doi.org/10.1089/jmf.2015.3475
Y. Andriani, N.M. Ramli, D.F. Syamsumir, M.N.I. Kassim, J. Jaafar, N.A. Aziz, L. Marlina, N.S. Musa and H. Mohamad, Arab. J. Chem., 12, 3555 (2019); https://doi.org/10.1016/j.arabjc.2015.11.003
R. Amorati and L. Valgimigli, J. Agric. Food Chem., 66, 3324 (2018); https://doi.org/10.1021/acs.jafc.8b01079
A. Floegel, D.O. Kim, S.J. Chung, S.I. Koo and O.K. Chun, J. Food Compos. Anal., 24, 1043 (2011); https://doi.org/10.1016/j.jfca.2011.01.008
F. Denizot and R. Lang, J. Immunol. Methods, 89, 271 (1986); https://doi.org/10.1016/0022-1759(86)90368-6
P. Mulvaney, Langmuir, 12, 788 (1996); https://doi.org/10.1021/la9502711
V.S. Kotakadi, S.A. Gaddam, S.K. Venkata and D.V.R. Sai Gopal, Appl. Nanosci., 5, 847 (2015); https://doi.org/10.1007/s13204-014-0381-7
G. Singhal, R. Bhavesh, K. Kasariya, A.R. Sharma and R.P. Singh, J. Nanopart. Res., 13, 2981 (2011); https://doi.org/10.1007/s11051-010-0193-y
A.L. Patterson, Phys. Rev., 56, 978 (1939); https://doi.org/10.1103/PhysRev.56.978
S. Mickymaray, Biomolecules, 9, 662 (2019); https://doi.org/10.3390/biom9110662
K. Logaranjan, A.J. Raiza, S.C.B. Gopinath, Y. Chen and K. Pandian, Nanoscale Res. Lett., 11, 520 (2016); https://doi.org/10.1186/s11671-016-1725-x
E.-Y. Ahn, H. Jin and Y. Park, Mater. Sci. Eng. C, 101, 204 (2019); https://doi.org/10.1016/j.msec.2019.03.095
R. Sankar, A. Karthik, A. Prabu, S. Karthik, K.S. Shivashangari and V. Ravikumar, Colloids Surf. B Biointerfaces, 108, 80 (2013); https://doi.org/10.1016/j.colsurfb.2013.02.033
S. Raj, S. Chand Mali and R. Trivedi, Biochem. Biophys. Res. Commun., 503, 2814 (2018); https://doi.org/10.1016/j.bbrc.2018.08.045
L. Shi, W. Zhao, Z. Yang, V. Subbiah and H.A.R. Suleria, Environ. Sci. Pollut. Res., 29, 81112 (2022); https://doi.org/10.1007/s11356-022-23337-6
A.K. Jha, K. Prasad, K. Prasad and A.R. Kulkarni, Colloids Surf. B Biointerfaces, 73, 219 (2009); https://doi.org/10.1016/j.colsurfb.2009.05.018
R.G. Saratale, G. Benelli, G. Kumar, D.S. Kim and G.D. Saratale, Environ. Sci. Pollut. Res. Int., 25, 10392 (2018); https://doi.org/10.1007/s11356-017-9581-5
K. Jyoti, M. Baunthiyal and A. Singh, J. Radiat. Res. Appl. Sci., 9, 217 (2016); https://doi.org/10.1016/j.jrras.2015.10.002
C.C. Doan, T.L. Le, N.Q.C. Ho, T.H.L. La, V.C. Nguyen, V.D. Le, T.P.T. Nguyen and N.S. Hoang, J. Ethnopharmacol., 284, 114803 (2022); https://doi.org/10.1016/j.jep.2021.114803