Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Nitrogen Doped Carbon Quantum Dots (NCQDs) from Dieffenbachia seguine Leaves for Fluorescent pH Sensing
Corresponding Author(s) : P. Negi
Asian Journal of Chemistry,
Vol. 35 No. 3 (2023): Vol 35 Issue 3, 2023
Abstract
Synthesis with the goal of developing new fluorophores and characterizing them to find suitability for various applications is of great importance in energy transfer in optoelectronics and biomedicine, detection of metal ions, etc. In this study, a hydrothermal method was employed to synthesize nitrogen doped carbon quantum dots (NCQDs) as pH sensor materials using Dieffenbachia seguine leaves as a carbon source. A detailed characterization of the NCQDs revealed an absorption spectrum from 200 to 800 nm with multiple peaks and an energy-band gap of 3.58 eV. Carbon was found to have the highest weight percentage, followed by nearly equal amounts of N and O and minor amounts of the other elements. The analysis revealed the presence and crystal morphology of functional groups such as OH, C=C and C–H. Variation of fluorescence intensity with pH was found in the pH range considered from 1 to 10 with a correlation of 0.92. The results of these parameters support the utility of synthetic NCQDs as fluorescent pH sensors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Yang, Y. Zhuo, S. Zhu, Y. Luo, Y. Feng and Y. Dou, Biosens. Bioelectron,, 60, 292 (2014); https://doi.10.1016/j.bios.2014.04.046
- L. Wang and H.S. Zhou, Anal. Chem., 86, 8902 (2014); https://doi.org/10.1021/ac502646x
- X. Ma, Y. Dong, H. Sun and N. Chen, Mater. Today Chem., 5, 1 (2017); https://doi.org/10.1016/j.mtchem.2017.04.004
- D. Pooja, L. Singh, A. Thakur and P. Kumar, Sens. Actuators B Chem., 283, 363 (2019); https://doi.org/10.1016/j.snb.2018.12.027
- R. Das, R. Bandyopadhyay and P. Pramanik, Mater. Today Chem., 8, 96 (2018); https://doi.org/10.1016/j.mtchem.2018.03.003
- G.S. Kumar, C. Gobinath, K. Karpaga, V. Hemamalini, K. Premkumar and S. Sivaramakrishnan, Colloids Surf. B, 95 235 (2012); https://doi.org/10.1016/j.colsurfb.2012.03.001
- F. Yan, Y. Jiang, X. Sun, Z. Bai, Y. Zhang and X. Zhou, Microchim. Acta, 185, 424 (2018); https://doi.org/10.1007/s00604-018-2953-9
- Y. Choi, Y. Choi, O.H. Kwon and B.S. Kim, Chem. Asian J., 13, 586 (2018); https://doi.org/10.1002/asia.201701736
- L. Xiao and H. Sun, Nanoscale Horiz., 3, 565 (2018); https://doi.org/10.1039/C8NH00106E
- E. Rossini, M.I. Milani and H.R. Pezza, Talanta, 201, 503 (2019); https://doi.org/10.1016/j.talanta.2019.04.045
- B.B. Wang, J.C. Jin, Z.Q. Xu, Z.W. Jiang, X. Li, F.L. Jiang and Y. Liu, J. Colloid Interface Sci., 551, 101 (2019); https://doi.org/10.1016/j.jcis.2019.04.088
- D. Yang, Y. Ye, Y. Su, S. Liu, D. Gong and H. Zhao, J. Clean. Prod., 229, 180 (2019); https://doi.org/10.1016/j.jclepro.2019.05.030
- D. Mosconi, D. Mazzier, S. Silvestrini, A. Privitera, C. Marega, L. Franco and A. Moretto, ACS Nano, 9 4156 (2015); https://doi.org/10.1021/acsnano.5b00319
- D. Carolan, C. Rocks, D.B. Padmanaban, P. Maguire, V. Svrcek and D. Mariott, Energy Fuels, 1, 1611 (2017); https://doi.org/10.1039/C7SE00158D
- S.D. Dsouza, M. Buerkle, P. Brunet, C. Maddi, D.B. Padmanaban, A. Morelli, A.F. Payam, P. Maguire, D. Mariotti and V. Svrcek, Carbon, 183, 1 (2021); https://doi.org/10.1016/j.carbon.2021.06.088
- X. Kou, S. Jiang, S.J. Park and L.Y. Meng, Dalton Trans., 49, 6915 (2020); https://doi.org/10.1039/D0DT01004A
- Z. Zhang, G. Yi, P. Li, X. Zhang, H. Fan, Y. Zhang, X. Wang and C. Zhang, Nanoscale, 12, 13899 (2020); https://doi.org/10.1039/D0NR03163A
- Z. Ma, H. Ming, H. Huang, Y. Liu and Z. Kang, New J. Chem., 36, 861 (2012); https://doi.org/10.1039/C2NJ20942J
- J.Y. Han and K. Burgess, Chem. Rev., 110, 2709 (2010); https://doi.org/10.1021/cr900249z
- T. Jin, A. Sasaki, M. Kinjo and J. Miyazaki, Chem. Commun., 46, 2408 (2010); https://doi.org/10.1039/B921602B
- M. Tantama, Y.P. Hung and G. Yellen, J. Am. Chem. Soc., 133, 10034 (2011); https://doi.org/10.1021/ja202902d
- Y.H. Chan, C.F. Wu, F.M. Ye, Y.H. Jin, P.B. Smith and D.T. Chiu, Anal. Chem., 83, 1448 (2011); https://doi.org/10.10.1021/ac103140x
- A. Barati, M. Shamsipur and H. Abdollahi, Biosens. Bioelectron., 71, 470 (2015); https://doi.org/10.1016/j.bios.2015.04.073
- P. Zuo, X. Lu, Z. Sun, Y. Guo and H. He, Mikrochim. Acta, 183, 519 (2015); https://doi.org/10.1007/s00604-015-1705-3
- F.F. Muhammad and K. Sulaiman, Measurement, 44, 1468 (2011); https://doi.org/10.1016/j.measurement.2011.05.017
- S. Raja, V. Ramesh and V. Thivaharan, Arabian J. Chem., 10, 253 (2017); https://doi.org/10.1016/j.arabjc.2015.06.023
- R. Jenkins and R.L. Snyder, Introduction to X-Ray Powder Diffractometry, John Wiley & Sons: New York, USA, Edn. 1, pp 544 (1996).
- Q. Xu, T. Kuang, Y. Liu, L. Cai, X. Peng, T.S. Sreeprasad, P. Zhao, Z. Yu and N. Li, J. Mater. Chem. B, 4, 7204 (2016); https://doi.org/10.1039/C6TB02131J
- Z. Zhang, G. Yi, P. Li, X. Zhang, H. Fan, Y. Zhang, X. Wang and C. Zhang, Nanoscale, 12, 13899 (2020); https://doi.org/10.1039/D0NR03163A
- B. Yao, H. Huang, Y. Liu and Z. Kang, Trends Chem., 1, 235 (2019); https://doi.org/10.1016/j.trechm.2019.02.003
- Z. Kang and S.T. Lee, Nanoscale, 11, 19214 (2019); https://doi.org/10.1039/C9NR05647E
- P. Joshi, R. Mishra and R.J. Narayan, Curr. Opin. Biomed. Eng., 18, 100274 (2021); https://doi.org/10.1016/j.cobme.2021.100274
- P. Roy, P.C. Chen, A.P. Periasamy, Y.N. Chen and H.T. Chang, Mater. Today, 18, 447 (2015); https://doi.org/10.1016/j.mattod.2015.04.005
References
X. Yang, Y. Zhuo, S. Zhu, Y. Luo, Y. Feng and Y. Dou, Biosens. Bioelectron,, 60, 292 (2014); https://doi.10.1016/j.bios.2014.04.046
L. Wang and H.S. Zhou, Anal. Chem., 86, 8902 (2014); https://doi.org/10.1021/ac502646x
X. Ma, Y. Dong, H. Sun and N. Chen, Mater. Today Chem., 5, 1 (2017); https://doi.org/10.1016/j.mtchem.2017.04.004
D. Pooja, L. Singh, A. Thakur and P. Kumar, Sens. Actuators B Chem., 283, 363 (2019); https://doi.org/10.1016/j.snb.2018.12.027
R. Das, R. Bandyopadhyay and P. Pramanik, Mater. Today Chem., 8, 96 (2018); https://doi.org/10.1016/j.mtchem.2018.03.003
G.S. Kumar, C. Gobinath, K. Karpaga, V. Hemamalini, K. Premkumar and S. Sivaramakrishnan, Colloids Surf. B, 95 235 (2012); https://doi.org/10.1016/j.colsurfb.2012.03.001
F. Yan, Y. Jiang, X. Sun, Z. Bai, Y. Zhang and X. Zhou, Microchim. Acta, 185, 424 (2018); https://doi.org/10.1007/s00604-018-2953-9
Y. Choi, Y. Choi, O.H. Kwon and B.S. Kim, Chem. Asian J., 13, 586 (2018); https://doi.org/10.1002/asia.201701736
L. Xiao and H. Sun, Nanoscale Horiz., 3, 565 (2018); https://doi.org/10.1039/C8NH00106E
E. Rossini, M.I. Milani and H.R. Pezza, Talanta, 201, 503 (2019); https://doi.org/10.1016/j.talanta.2019.04.045
B.B. Wang, J.C. Jin, Z.Q. Xu, Z.W. Jiang, X. Li, F.L. Jiang and Y. Liu, J. Colloid Interface Sci., 551, 101 (2019); https://doi.org/10.1016/j.jcis.2019.04.088
D. Yang, Y. Ye, Y. Su, S. Liu, D. Gong and H. Zhao, J. Clean. Prod., 229, 180 (2019); https://doi.org/10.1016/j.jclepro.2019.05.030
D. Mosconi, D. Mazzier, S. Silvestrini, A. Privitera, C. Marega, L. Franco and A. Moretto, ACS Nano, 9 4156 (2015); https://doi.org/10.1021/acsnano.5b00319
D. Carolan, C. Rocks, D.B. Padmanaban, P. Maguire, V. Svrcek and D. Mariott, Energy Fuels, 1, 1611 (2017); https://doi.org/10.1039/C7SE00158D
S.D. Dsouza, M. Buerkle, P. Brunet, C. Maddi, D.B. Padmanaban, A. Morelli, A.F. Payam, P. Maguire, D. Mariotti and V. Svrcek, Carbon, 183, 1 (2021); https://doi.org/10.1016/j.carbon.2021.06.088
X. Kou, S. Jiang, S.J. Park and L.Y. Meng, Dalton Trans., 49, 6915 (2020); https://doi.org/10.1039/D0DT01004A
Z. Zhang, G. Yi, P. Li, X. Zhang, H. Fan, Y. Zhang, X. Wang and C. Zhang, Nanoscale, 12, 13899 (2020); https://doi.org/10.1039/D0NR03163A
Z. Ma, H. Ming, H. Huang, Y. Liu and Z. Kang, New J. Chem., 36, 861 (2012); https://doi.org/10.1039/C2NJ20942J
J.Y. Han and K. Burgess, Chem. Rev., 110, 2709 (2010); https://doi.org/10.1021/cr900249z
T. Jin, A. Sasaki, M. Kinjo and J. Miyazaki, Chem. Commun., 46, 2408 (2010); https://doi.org/10.1039/B921602B
M. Tantama, Y.P. Hung and G. Yellen, J. Am. Chem. Soc., 133, 10034 (2011); https://doi.org/10.1021/ja202902d
Y.H. Chan, C.F. Wu, F.M. Ye, Y.H. Jin, P.B. Smith and D.T. Chiu, Anal. Chem., 83, 1448 (2011); https://doi.org/10.10.1021/ac103140x
A. Barati, M. Shamsipur and H. Abdollahi, Biosens. Bioelectron., 71, 470 (2015); https://doi.org/10.1016/j.bios.2015.04.073
P. Zuo, X. Lu, Z. Sun, Y. Guo and H. He, Mikrochim. Acta, 183, 519 (2015); https://doi.org/10.1007/s00604-015-1705-3
F.F. Muhammad and K. Sulaiman, Measurement, 44, 1468 (2011); https://doi.org/10.1016/j.measurement.2011.05.017
S. Raja, V. Ramesh and V. Thivaharan, Arabian J. Chem., 10, 253 (2017); https://doi.org/10.1016/j.arabjc.2015.06.023
R. Jenkins and R.L. Snyder, Introduction to X-Ray Powder Diffractometry, John Wiley & Sons: New York, USA, Edn. 1, pp 544 (1996).
Q. Xu, T. Kuang, Y. Liu, L. Cai, X. Peng, T.S. Sreeprasad, P. Zhao, Z. Yu and N. Li, J. Mater. Chem. B, 4, 7204 (2016); https://doi.org/10.1039/C6TB02131J
Z. Zhang, G. Yi, P. Li, X. Zhang, H. Fan, Y. Zhang, X. Wang and C. Zhang, Nanoscale, 12, 13899 (2020); https://doi.org/10.1039/D0NR03163A
B. Yao, H. Huang, Y. Liu and Z. Kang, Trends Chem., 1, 235 (2019); https://doi.org/10.1016/j.trechm.2019.02.003
Z. Kang and S.T. Lee, Nanoscale, 11, 19214 (2019); https://doi.org/10.1039/C9NR05647E
P. Joshi, R. Mishra and R.J. Narayan, Curr. Opin. Biomed. Eng., 18, 100274 (2021); https://doi.org/10.1016/j.cobme.2021.100274
P. Roy, P.C. Chen, A.P. Periasamy, Y.N. Chen and H.T. Chang, Mater. Today, 18, 447 (2015); https://doi.org/10.1016/j.mattod.2015.04.005