Identification of Phytochemical Constituents in Phyllanthus acidus L. Leaf through Gas Chromatography-Mass Spectroscopy as Biostimulant
Corresponding Author(s) : C. Swaminathan
Asian Journal of Chemistry,
Vol. 35 No. 3 (2023): Vol 35 Issue 3 page 673-678
Abstract
The Phyllanthus acidus L. belongs to the family phyllanthaceae and possess a wide range of secondary metabolites and phytochemicals in leaves. To siphon off the use of synthetic chemicals in crop production, an alternative like utilizing the natural bio-stimulants could play a crucial role in promoting crop growth and development. The major goal of this study was to employ gas chromatography-mass spectrometry to examine the bioactive compounds present in phyllanthus leaf and to identify and characterize them utilizing dichloromethane as extraction solvent. According to GC-MS analysis, dichloromethane extraction of phyllanthus leaf yielded, 25 phytoconstituents in which ethyl oleate contributed the area percentage of 53.68%, hexadecanoic acid, ethyl ester by 17.47%, octadecanoic acid, ethyl ester by 4.56%, squalene by 1.93% and cyclodecasiloxane, eicosamethyl- by 1.80% were having the largest area coverage percentage. Since most of the phytoconstituents are growth stimulants, it is suggested that phyllanthus leaf extracts be produced on a commercial scale as an exogenous biostimulant for plant growth and development.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Basile, N. Brown, J.M. Valdes, M. Cardarelli, P. Scognamiglio, A. Mataffo, Y. Rouphael, P. Bonini and G. Colla, Plants, 10, 619 (2021); https://doi.org/10.3390/plants10040619
- M. Andresen and N. Cedergreen, HortScience, 45, 1848 (2010); https://doi.org/10.21273/HORTSCI.45.12.1848
- F. Zulfiqar, A. Casadesus, H. Brockman and S. Munné-Bosch, Plant Sci., 295, 110194 (2020); https://doi.org/10.1016/j.plantsci.2019.110194
- Y. Qu, A.M. Thamm, M. Czerwinski, S. Masada, K.H. Kim, G. Jones, P. Liang and V. De Luca, Planta, 247, 625 (2018); https://doi.org/10.1007/s00425-017-2812-7
- X. Mao, L.-F. Wu, H.-L. Guo, W.-J. Chen, Y.-P. Cui, Q. Qi, S. Li, W.-Y. Liang, G.-H. Yang, Y.-Y. Shao, D. Zhu, G.-M. She, Y. You and L.-Z. Zhang, Evid.-Based Complem. Altern. Med., 2016, 7584952 (2016); https://doi.org/10.1155/2016/7584952
- S.X. Luo, H.J. Esser, D. Zhang and S.S. Renner, Syst. Bot., 36, 99 (2011); https://doi.org/10.1600/036364411X553171
- R. Ghosh Tarafdar, S. Nath, A. Das Talukdar and M. Dutta Choudhury, J. Pharm. Pharmacol., 68, 148 (2016); https://doi.org/10.1111/jphp.12514
- S.P. Tan, E.N.Y. Tan, Q.Y. Lim and M.A. Nafiah, J. Ethnopharmacol., 253, 112610 (2020); https://doi.org/10.1016/j.jep.2020.112610
- K. Shilali, Y.L. Ramachandra, K.P. Rajesh and B.E. Kumaraswamy, Int. J. Pharm. Pharm. Sci., 6, 522 (2014).
- S.P. Chakraborty, S.K. Sahu, P. Pramanik and S. Roy, Asian Pac. J. Trop. Biomed., 2, 215 (2012); https://doi.org/10.1016/S2221-1691(12)60044-6
- N.K. Jain and A.K. Singhai, Asian Pac. J. Trop. Med., 4, 470 (2011); https://doi.org/10.1016/S1995-7645(11)60128-4
- R. Chakraborty, B. De, N. Devanna and S. Sen, A P J. Trop. Biomed., 2, S953 (2012).
- A. Jagajothi, G. Manimekalai, V.K. Evanjelene and A. Nirmala, J. Biol. Todays World, 2, 55 (2013).
- A. Pérez-Colmenares, Y. Obregón-Díaz, L. Rojas-Fermín, R. AparicioZambrano, J. Carmona-Arzola and A. Usubillaga, Nat. Prod. Commun., 13, 97 (2018).
- M. Nisar, J. He, A. Ahmed, Y. Yang, M. Li and C. Wan, Molecules, 23, 2567 (2018); https://doi.org/10.3390/molecules23102567
- A.R. Pangestika, E. Widodo and E. Sudjarwo, Int. Res. J. Adv. Eng. Sci., 5, 305 (2020).
- N. Noorudheen and D.K. Chandrasekharan, South Indian J. Biol. Sci., 2, 95 (2016); https://doi.org/10.22205/sijbs/2016/v2/i1/100353
- E.E. Stashenko and J.R. Martínez, GC-MS Analysis of Volatile Plant Secondary Metabolites, In: Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications, InTechOpen, pp. 262-264 (2012).
- J.A. Pino, L.F. Cuevas-Glory, R. Marbot and V. Fuentes, Revista CENIC Ciencias Quím., 39, 3 (2020).
- A. Edreva, V. Velikova, T. Tsonev, S. Dagnon, A. Gurel, L. Aktas and E. Gesheva, Gen. Appl. Plant Physiol., 34, 67 (2008).
- A. Kachroo, D.Q. Fu, W. Havens, D. Navarre, P. Kachroo and S.A. Ghabrial, Mol. Plant Microbe Interact., 21, 564 (2008); https://doi.org/10.1094/MPMI-21-5-0564
- D. Sheela and F. Uthayakumari, Biosci. Disc., 4, 47 (2013).
- A.V. Zhukov, Russ. J. Plant Physiol., 62, 706 (2015); https://doi.org/10.1134/S1021443715050192
- C.M. De Moraes, M.C. Mescher and J.H. Tumlinson, Nature, 410, 577 (2001); https://doi.org/10.1038/35069058
- A. Kessler and I.T. Baldwin, Science, 291, 2141 (2001); https://doi.org/10.1126/science.291.5511.2141
- T.C. Turlings and F. Wackers, Adv. Insect Chemical Ecol., 2, 21 (2004); https://doi.org/10.1017/CBO9780511542664.003
- J.B. Runyon, M.C. Mescher and C.M. De Moraes, Science, 313, 1964 (2006); https://doi.org/10.1126/science.1131371
- A.C. Huang and A. Osbourn, Pest Manag. Sci., 75, 2368 (2019); https://doi.org/10.1002/ps.5410
- M. Xu, R. Galhano, P. Wiemann, E. Bueno, M. Tiernan, W. Wu, I.-M. Chung, J. Gershenzon, B. Tudzynski, A. Sesma and R.J. Peters, New Phytol., 193, 570 (2012); https://doi.org/10.1111/j.1469-8137.2011.04005.x
- I. Jayashree, D. Geetha and M. Rajeswari, Int. J. Pharm. Sci. Res., 6, 2546 (2015); https://doi.org/10.13040/IJPSR.0975-8232.6(6).2546-50
- B. Singh and R.A. Sharma, 3 BioTech., 5, 129 (2015); https://doi.org/10.1007/s13205-014-0220-2
- S.L. Toffolatti, G. Maddalena, A. Passera, P. Casati, P.A. Bianco and F. Quaglino, Role of Terpenes in Plant Defense to Biotic Stress, In: Biocontrol Agents and Secondary Metabolites, Woodhead Publishing., Chap. 16, pp. 401-417 (2021).