Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Identification of Phytochemical Constituents in Phyllanthus acidus L. Leaf through Gas Chromatography-Mass Spectroscopy as Biostimulant
Corresponding Author(s) : C. Swaminathan
Asian Journal of Chemistry,
Vol. 35 No. 3 (2023): Vol 35 Issue 3, 2023
Abstract
The Phyllanthus acidus L. belongs to the family phyllanthaceae and possess a wide range of secondary metabolites and phytochemicals in leaves. To siphon off the use of synthetic chemicals in crop production, an alternative like utilizing the natural bio-stimulants could play a crucial role in promoting crop growth and development. The major goal of this study was to employ gas chromatography-mass spectrometry to examine the bioactive compounds present in phyllanthus leaf and to identify and characterize them utilizing dichloromethane as extraction solvent. According to GC-MS analysis, dichloromethane extraction of phyllanthus leaf yielded, 25 phytoconstituents in which ethyl oleate contributed the area percentage of 53.68%, hexadecanoic acid, ethyl ester by 17.47%, octadecanoic acid, ethyl ester by 4.56%, squalene by 1.93% and cyclodecasiloxane, eicosamethyl- by 1.80% were having the largest area coverage percentage. Since most of the phytoconstituents are growth stimulants, it is suggested that phyllanthus leaf extracts be produced on a commercial scale as an exogenous biostimulant for plant growth and development.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Basile, N. Brown, J.M. Valdes, M. Cardarelli, P. Scognamiglio, A. Mataffo, Y. Rouphael, P. Bonini and G. Colla, Plants, 10, 619 (2021); https://doi.org/10.3390/plants10040619
- M. Andresen and N. Cedergreen, HortScience, 45, 1848 (2010); https://doi.org/10.21273/HORTSCI.45.12.1848
- F. Zulfiqar, A. Casadesus, H. Brockman and S. Munné-Bosch, Plant Sci., 295, 110194 (2020); https://doi.org/10.1016/j.plantsci.2019.110194
- Y. Qu, A.M. Thamm, M. Czerwinski, S. Masada, K.H. Kim, G. Jones, P. Liang and V. De Luca, Planta, 247, 625 (2018); https://doi.org/10.1007/s00425-017-2812-7
- X. Mao, L.-F. Wu, H.-L. Guo, W.-J. Chen, Y.-P. Cui, Q. Qi, S. Li, W.-Y. Liang, G.-H. Yang, Y.-Y. Shao, D. Zhu, G.-M. She, Y. You and L.-Z. Zhang, Evid.-Based Complem. Altern. Med., 2016, 7584952 (2016); https://doi.org/10.1155/2016/7584952
- S.X. Luo, H.J. Esser, D. Zhang and S.S. Renner, Syst. Bot., 36, 99 (2011); https://doi.org/10.1600/036364411X553171
- R. Ghosh Tarafdar, S. Nath, A. Das Talukdar and M. Dutta Choudhury, J. Pharm. Pharmacol., 68, 148 (2016); https://doi.org/10.1111/jphp.12514
- S.P. Tan, E.N.Y. Tan, Q.Y. Lim and M.A. Nafiah, J. Ethnopharmacol., 253, 112610 (2020); https://doi.org/10.1016/j.jep.2020.112610
- K. Shilali, Y.L. Ramachandra, K.P. Rajesh and B.E. Kumaraswamy, Int. J. Pharm. Pharm. Sci., 6, 522 (2014).
- S.P. Chakraborty, S.K. Sahu, P. Pramanik and S. Roy, Asian Pac. J. Trop. Biomed., 2, 215 (2012); https://doi.org/10.1016/S2221-1691(12)60044-6
- N.K. Jain and A.K. Singhai, Asian Pac. J. Trop. Med., 4, 470 (2011); https://doi.org/10.1016/S1995-7645(11)60128-4
- R. Chakraborty, B. De, N. Devanna and S. Sen, A P J. Trop. Biomed., 2, S953 (2012).
- A. Jagajothi, G. Manimekalai, V.K. Evanjelene and A. Nirmala, J. Biol. Todays World, 2, 55 (2013).
- A. Pérez-Colmenares, Y. Obregón-Díaz, L. Rojas-Fermín, R. AparicioZambrano, J. Carmona-Arzola and A. Usubillaga, Nat. Prod. Commun., 13, 97 (2018).
- M. Nisar, J. He, A. Ahmed, Y. Yang, M. Li and C. Wan, Molecules, 23, 2567 (2018); https://doi.org/10.3390/molecules23102567
- A.R. Pangestika, E. Widodo and E. Sudjarwo, Int. Res. J. Adv. Eng. Sci., 5, 305 (2020).
- N. Noorudheen and D.K. Chandrasekharan, South Indian J. Biol. Sci., 2, 95 (2016); https://doi.org/10.22205/sijbs/2016/v2/i1/100353
- E.E. Stashenko and J.R. Martínez, GC-MS Analysis of Volatile Plant Secondary Metabolites, In: Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications, InTechOpen, pp. 262-264 (2012).
- J.A. Pino, L.F. Cuevas-Glory, R. Marbot and V. Fuentes, Revista CENIC Ciencias Quím., 39, 3 (2020).
- A. Edreva, V. Velikova, T. Tsonev, S. Dagnon, A. Gurel, L. Aktas and E. Gesheva, Gen. Appl. Plant Physiol., 34, 67 (2008).
- A. Kachroo, D.Q. Fu, W. Havens, D. Navarre, P. Kachroo and S.A. Ghabrial, Mol. Plant Microbe Interact., 21, 564 (2008); https://doi.org/10.1094/MPMI-21-5-0564
- D. Sheela and F. Uthayakumari, Biosci. Disc., 4, 47 (2013).
- A.V. Zhukov, Russ. J. Plant Physiol., 62, 706 (2015); https://doi.org/10.1134/S1021443715050192
- C.M. De Moraes, M.C. Mescher and J.H. Tumlinson, Nature, 410, 577 (2001); https://doi.org/10.1038/35069058
- A. Kessler and I.T. Baldwin, Science, 291, 2141 (2001); https://doi.org/10.1126/science.291.5511.2141
- T.C. Turlings and F. Wackers, Adv. Insect Chemical Ecol., 2, 21 (2004); https://doi.org/10.1017/CBO9780511542664.003
- J.B. Runyon, M.C. Mescher and C.M. De Moraes, Science, 313, 1964 (2006); https://doi.org/10.1126/science.1131371
- A.C. Huang and A. Osbourn, Pest Manag. Sci., 75, 2368 (2019); https://doi.org/10.1002/ps.5410
- M. Xu, R. Galhano, P. Wiemann, E. Bueno, M. Tiernan, W. Wu, I.-M. Chung, J. Gershenzon, B. Tudzynski, A. Sesma and R.J. Peters, New Phytol., 193, 570 (2012); https://doi.org/10.1111/j.1469-8137.2011.04005.x
- I. Jayashree, D. Geetha and M. Rajeswari, Int. J. Pharm. Sci. Res., 6, 2546 (2015); https://doi.org/10.13040/IJPSR.0975-8232.6(6).2546-50
- B. Singh and R.A. Sharma, 3 BioTech., 5, 129 (2015); https://doi.org/10.1007/s13205-014-0220-2
- S.L. Toffolatti, G. Maddalena, A. Passera, P. Casati, P.A. Bianco and F. Quaglino, Role of Terpenes in Plant Defense to Biotic Stress, In: Biocontrol Agents and Secondary Metabolites, Woodhead Publishing., Chap. 16, pp. 401-417 (2021).
References
B. Basile, N. Brown, J.M. Valdes, M. Cardarelli, P. Scognamiglio, A. Mataffo, Y. Rouphael, P. Bonini and G. Colla, Plants, 10, 619 (2021); https://doi.org/10.3390/plants10040619
M. Andresen and N. Cedergreen, HortScience, 45, 1848 (2010); https://doi.org/10.21273/HORTSCI.45.12.1848
F. Zulfiqar, A. Casadesus, H. Brockman and S. Munné-Bosch, Plant Sci., 295, 110194 (2020); https://doi.org/10.1016/j.plantsci.2019.110194
Y. Qu, A.M. Thamm, M. Czerwinski, S. Masada, K.H. Kim, G. Jones, P. Liang and V. De Luca, Planta, 247, 625 (2018); https://doi.org/10.1007/s00425-017-2812-7
X. Mao, L.-F. Wu, H.-L. Guo, W.-J. Chen, Y.-P. Cui, Q. Qi, S. Li, W.-Y. Liang, G.-H. Yang, Y.-Y. Shao, D. Zhu, G.-M. She, Y. You and L.-Z. Zhang, Evid.-Based Complem. Altern. Med., 2016, 7584952 (2016); https://doi.org/10.1155/2016/7584952
S.X. Luo, H.J. Esser, D. Zhang and S.S. Renner, Syst. Bot., 36, 99 (2011); https://doi.org/10.1600/036364411X553171
R. Ghosh Tarafdar, S. Nath, A. Das Talukdar and M. Dutta Choudhury, J. Pharm. Pharmacol., 68, 148 (2016); https://doi.org/10.1111/jphp.12514
S.P. Tan, E.N.Y. Tan, Q.Y. Lim and M.A. Nafiah, J. Ethnopharmacol., 253, 112610 (2020); https://doi.org/10.1016/j.jep.2020.112610
K. Shilali, Y.L. Ramachandra, K.P. Rajesh and B.E. Kumaraswamy, Int. J. Pharm. Pharm. Sci., 6, 522 (2014).
S.P. Chakraborty, S.K. Sahu, P. Pramanik and S. Roy, Asian Pac. J. Trop. Biomed., 2, 215 (2012); https://doi.org/10.1016/S2221-1691(12)60044-6
N.K. Jain and A.K. Singhai, Asian Pac. J. Trop. Med., 4, 470 (2011); https://doi.org/10.1016/S1995-7645(11)60128-4
R. Chakraborty, B. De, N. Devanna and S. Sen, A P J. Trop. Biomed., 2, S953 (2012).
A. Jagajothi, G. Manimekalai, V.K. Evanjelene and A. Nirmala, J. Biol. Todays World, 2, 55 (2013).
A. Pérez-Colmenares, Y. Obregón-Díaz, L. Rojas-Fermín, R. AparicioZambrano, J. Carmona-Arzola and A. Usubillaga, Nat. Prod. Commun., 13, 97 (2018).
M. Nisar, J. He, A. Ahmed, Y. Yang, M. Li and C. Wan, Molecules, 23, 2567 (2018); https://doi.org/10.3390/molecules23102567
A.R. Pangestika, E. Widodo and E. Sudjarwo, Int. Res. J. Adv. Eng. Sci., 5, 305 (2020).
N. Noorudheen and D.K. Chandrasekharan, South Indian J. Biol. Sci., 2, 95 (2016); https://doi.org/10.22205/sijbs/2016/v2/i1/100353
E.E. Stashenko and J.R. Martínez, GC-MS Analysis of Volatile Plant Secondary Metabolites, In: Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications, InTechOpen, pp. 262-264 (2012).
J.A. Pino, L.F. Cuevas-Glory, R. Marbot and V. Fuentes, Revista CENIC Ciencias Quím., 39, 3 (2020).
A. Edreva, V. Velikova, T. Tsonev, S. Dagnon, A. Gurel, L. Aktas and E. Gesheva, Gen. Appl. Plant Physiol., 34, 67 (2008).
A. Kachroo, D.Q. Fu, W. Havens, D. Navarre, P. Kachroo and S.A. Ghabrial, Mol. Plant Microbe Interact., 21, 564 (2008); https://doi.org/10.1094/MPMI-21-5-0564
D. Sheela and F. Uthayakumari, Biosci. Disc., 4, 47 (2013).
A.V. Zhukov, Russ. J. Plant Physiol., 62, 706 (2015); https://doi.org/10.1134/S1021443715050192
C.M. De Moraes, M.C. Mescher and J.H. Tumlinson, Nature, 410, 577 (2001); https://doi.org/10.1038/35069058
A. Kessler and I.T. Baldwin, Science, 291, 2141 (2001); https://doi.org/10.1126/science.291.5511.2141
T.C. Turlings and F. Wackers, Adv. Insect Chemical Ecol., 2, 21 (2004); https://doi.org/10.1017/CBO9780511542664.003
J.B. Runyon, M.C. Mescher and C.M. De Moraes, Science, 313, 1964 (2006); https://doi.org/10.1126/science.1131371
A.C. Huang and A. Osbourn, Pest Manag. Sci., 75, 2368 (2019); https://doi.org/10.1002/ps.5410
M. Xu, R. Galhano, P. Wiemann, E. Bueno, M. Tiernan, W. Wu, I.-M. Chung, J. Gershenzon, B. Tudzynski, A. Sesma and R.J. Peters, New Phytol., 193, 570 (2012); https://doi.org/10.1111/j.1469-8137.2011.04005.x
I. Jayashree, D. Geetha and M. Rajeswari, Int. J. Pharm. Sci. Res., 6, 2546 (2015); https://doi.org/10.13040/IJPSR.0975-8232.6(6).2546-50
B. Singh and R.A. Sharma, 3 BioTech., 5, 129 (2015); https://doi.org/10.1007/s13205-014-0220-2
S.L. Toffolatti, G. Maddalena, A. Passera, P. Casati, P.A. Bianco and F. Quaglino, Role of Terpenes in Plant Defense to Biotic Stress, In: Biocontrol Agents and Secondary Metabolites, Woodhead Publishing., Chap. 16, pp. 401-417 (2021).