Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of New Degradable AB-Type Polyesters with 1,2,3-Triazole Rings in the Backbone via “Click” Step-Growth Polymerization
Corresponding Author(s) : R. Katsarava
Asian Journal of Chemistry,
Vol. 35 No. 3 (2023): Vol 35 Issue 3, 2023
Abstract
A series of new aliphatic AB-type polyesters (PEs) and co-polyesters (co-PEs) with 1,2,3-triazole rings in the backbone were successfully synthesized via Cu(I)-catalyzed click step-growth polymerization (SGP) following the efficient one pot/two step synthetic strategy. The structure of the click polymers was confirmed by FT-IR and NMR spectroscopy and the new materials were characterized in terms of yield, solubility, film-forming properties, molecular weights and molecular weight distribution by gel permeation chromatography (GPC) and degradation ability by total organic carbon (TOC) technique. The obtained hydrolytically degradable AB-type polyesters and co-polyesters with a rather high degree of polymerization, film-forming properties and solubility behaviour increase a library of available degradable click polymers promising for wide range of biomedical applications and also confirm the suitability of the present synthetic strategy for designing different types of triazole main chain degradable click polymers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.H. Binder and R. Sachsenhofer, Macromol. Rapid Commun., 28, 15 (2007); https://doi.org/10.1002/marc.200600625
- D. Fournier, R. Hoogenboom and U.S. Schubert, Chem. Soc. Rev., 36, 1369 (2007); https://doi.org/10.1039/b700809k
- J.A. Johnson, M.G. Finn, J.T. Koberstein and N.J. Turro, Macromol. Rapid Commun., 29, 1052 (2008); https://doi.org/10.1002/marc.200800208
- R.K. Iha, K.L. Wooley, A.M. Nyström, D.J. Burke, M.J. Kade and C.J. Hawker, Chem. Rev., 109, 5620 (2009); https://doi.org/10.1021/cr900138t
- L. Billiet, D. Fournier and F. Du Prez, Polymer, 50, 3877 (2009); https://doi.org/10.1016/j.polymer.2009.06.034
- L. Liang and D. Astruc, Coord. Chem. Rev., 255, 2933 (2011); https://doi.org/10.1016/j.ccr.2011.06.028
- U. Tunca, J. Polym. Sci. A Polym. Chem., 52, 3147 (2014); https://doi.org/10.1002/pola.27379
- M. Arseneault, C. Wafer and J.-F. Morin, Molecules, 20, 9263 (2015); https://doi.org/10.3390/molecules20059263
- Z. Geng, J.J. Shin, Y. Xi and C.J. Hawker, J. Polym. Sci., 59, 963 (2021); https://doi.org/10.1002/pol.20210126
- A.J. Scheel, H. Komber and B. Voit, Macromol. Rapid Commun., 25, 1175 (2004); https://doi.org/10.1002/marc.200400097
- A. Qin, J.W.Y. Lam and B.Z. Tang, Macromolecules, 43, 8693 (2010); https://doi.org/10.1021/ma101064u
- H. Li, J. Sun, A. Qin and B.Z. Tang, Chin. J. Polym. Sci., 30, 1 (2012); https://doi.org/10.1007/s10118-012-1098-2
- Y. Shi, J.Z. Sun and A. Qin, J. Polym. Sci. A Polym. Chem., 55, 616 (2017); https://doi.org/10.1002/pola.28419
- Y. Nagao and A. Takasu, J. Polym. Sci. A Polym. Chem., 48, 4207 (2010); https://doi.org/10.1002/pola.24206
- M. Bueno, I. Molina and J.A. Galbis, Polym. Degrad. Stab., 97, 1662 (2012); https://doi.org/10.1016/j.polymdegradstab.2012.06.020
- X. Liu, L. Quan, J. Tian, F. Laquer, P. Ciborowski and D. Wang, Biomacromolecules, 11, 2621 (2010); https://doi.org/10.1021/bm100578c
- Y. Wang, R. Zhang, N. Xu, F. Du, Y. Wang, Y. Tan, S. Ji, D. Liang and Z. Li, Biomacromolecules, 12, 66 (2011); https://doi.org/10.1021/bm101005j
- J. Guo, Y. Wei, D. Zhou, P. Cai, X. Jing, X. Chen and Y. Huang, Biomacromolecules, 12, 737 (2011); https://doi.org/10.1021/bm1013662
- A. Eissa and E. Khosravi, Eur. Polym. J., 47, 61 (2011); https://doi.org/10.1016/j.eurpolymj.2010.10.023
- M. Dijk, M.L. Nollet, P. Weijers, A.C. Dechesne, C.F. Nostrum, W.E. Hennink, D.T.S. Rijkers and R.M.J. Liskamp, Biomacromolecules, 9, 2834 (2008); https://doi.org/10.1021/bm8005984
- M. Abid, M. Aden Ali, J. Bernard, S. Abid, E. Fleury and R. El Gharbi, Polym. Sci. Ser. B, 56, 290 (2014); https://doi.org/10.1134/S1560090414030014
- M.V. Rivas, G. Petroselli, R. Erra-Balsells, O. Varela and A.A. Kolender, RSC Adv., 9, 9860 (2019); https://doi.org/10.1039/C9RA00398C
- D.J. Sheehan, C.A. Hitchcock and C.M. Sibley, Clin. Microbiol. Rev., 12, 40 (1999); https://doi.org/10.1128/CMR.12.1.40
- R.G. Lima-Neto, N.N.M. Cavalcante, R.M. Srivastava, F.J.B. Mendonça Junior, A.G. Wanderley, R.P. Neves and J.V. dos Anjos, Molecules, 17, 5882 (2012); https://doi.org/10.3390/molecules17055882
- A.A.H. Ahmad Fuaad, F. Azmi, M. Skwarczynski and I. Toth, Molecules, 18, 13148 (2013); https://doi.org/10.3390/molecules181113148
- T. Kantaria, T. Kantaria, G. Titvinidze, G. Otinashvili, N. Kupatadze, N. Zavradashvili, D. Tugushi and R. Katsarava, Int. J. Polym. Sci., 2018, 6798258 (2018); https://doi.org/10.1155/2018/6798258
- J.M. Aizpurua, R.M. Fratila, Z. Monasterio, N. Pérez-Esnaola, E. Andreieff, A. Irastorza and M. Sagartzazu-Aizpurua, New J. Chem., 38, 474 (2014); https://doi.org/10.1039/C3NJ00667K
- I. Abdelhedi-Miladi, M.M. Obadia, I. Allaoua, A. Serghei, H.B. Romdhane and E. Drockenmuller, Macromol. Chem. Phys., 215, 2229 (2014); https://doi.org/10.1002/macp.201400182
- D.-L. Mo, D.J. Wink and L.L. Anderson, Chem. Eur. J., 20, 13217 (2014); https://doi.org/10.1002/chem.201403268
- S. Sinnwell, A.J. Inglis, M.H. Stenzel and C. Barner-Kowollik, Macromol. Rapid Commun., 29, 1090 (2008); https://doi.org/10.1002/marc.200800233
- C.N. Urbani, C.A. Bell, D. Lonsdale, M.R. Whittaker and M.J. Monteiro, Macromolecules, 41, 76 (2008); https://doi.org/10.1021/ma701993w
- D.E. Lonsdale, C.A. Bell and M.J. Monteiro, Macromolecules, 43, 3331 (2010); https://doi.org/10.1021/ma902597p
References
W.H. Binder and R. Sachsenhofer, Macromol. Rapid Commun., 28, 15 (2007); https://doi.org/10.1002/marc.200600625
D. Fournier, R. Hoogenboom and U.S. Schubert, Chem. Soc. Rev., 36, 1369 (2007); https://doi.org/10.1039/b700809k
J.A. Johnson, M.G. Finn, J.T. Koberstein and N.J. Turro, Macromol. Rapid Commun., 29, 1052 (2008); https://doi.org/10.1002/marc.200800208
R.K. Iha, K.L. Wooley, A.M. Nyström, D.J. Burke, M.J. Kade and C.J. Hawker, Chem. Rev., 109, 5620 (2009); https://doi.org/10.1021/cr900138t
L. Billiet, D. Fournier and F. Du Prez, Polymer, 50, 3877 (2009); https://doi.org/10.1016/j.polymer.2009.06.034
L. Liang and D. Astruc, Coord. Chem. Rev., 255, 2933 (2011); https://doi.org/10.1016/j.ccr.2011.06.028
U. Tunca, J. Polym. Sci. A Polym. Chem., 52, 3147 (2014); https://doi.org/10.1002/pola.27379
M. Arseneault, C. Wafer and J.-F. Morin, Molecules, 20, 9263 (2015); https://doi.org/10.3390/molecules20059263
Z. Geng, J.J. Shin, Y. Xi and C.J. Hawker, J. Polym. Sci., 59, 963 (2021); https://doi.org/10.1002/pol.20210126
A.J. Scheel, H. Komber and B. Voit, Macromol. Rapid Commun., 25, 1175 (2004); https://doi.org/10.1002/marc.200400097
A. Qin, J.W.Y. Lam and B.Z. Tang, Macromolecules, 43, 8693 (2010); https://doi.org/10.1021/ma101064u
H. Li, J. Sun, A. Qin and B.Z. Tang, Chin. J. Polym. Sci., 30, 1 (2012); https://doi.org/10.1007/s10118-012-1098-2
Y. Shi, J.Z. Sun and A. Qin, J. Polym. Sci. A Polym. Chem., 55, 616 (2017); https://doi.org/10.1002/pola.28419
Y. Nagao and A. Takasu, J. Polym. Sci. A Polym. Chem., 48, 4207 (2010); https://doi.org/10.1002/pola.24206
M. Bueno, I. Molina and J.A. Galbis, Polym. Degrad. Stab., 97, 1662 (2012); https://doi.org/10.1016/j.polymdegradstab.2012.06.020
X. Liu, L. Quan, J. Tian, F. Laquer, P. Ciborowski and D. Wang, Biomacromolecules, 11, 2621 (2010); https://doi.org/10.1021/bm100578c
Y. Wang, R. Zhang, N. Xu, F. Du, Y. Wang, Y. Tan, S. Ji, D. Liang and Z. Li, Biomacromolecules, 12, 66 (2011); https://doi.org/10.1021/bm101005j
J. Guo, Y. Wei, D. Zhou, P. Cai, X. Jing, X. Chen and Y. Huang, Biomacromolecules, 12, 737 (2011); https://doi.org/10.1021/bm1013662
A. Eissa and E. Khosravi, Eur. Polym. J., 47, 61 (2011); https://doi.org/10.1016/j.eurpolymj.2010.10.023
M. Dijk, M.L. Nollet, P. Weijers, A.C. Dechesne, C.F. Nostrum, W.E. Hennink, D.T.S. Rijkers and R.M.J. Liskamp, Biomacromolecules, 9, 2834 (2008); https://doi.org/10.1021/bm8005984
M. Abid, M. Aden Ali, J. Bernard, S. Abid, E. Fleury and R. El Gharbi, Polym. Sci. Ser. B, 56, 290 (2014); https://doi.org/10.1134/S1560090414030014
M.V. Rivas, G. Petroselli, R. Erra-Balsells, O. Varela and A.A. Kolender, RSC Adv., 9, 9860 (2019); https://doi.org/10.1039/C9RA00398C
D.J. Sheehan, C.A. Hitchcock and C.M. Sibley, Clin. Microbiol. Rev., 12, 40 (1999); https://doi.org/10.1128/CMR.12.1.40
R.G. Lima-Neto, N.N.M. Cavalcante, R.M. Srivastava, F.J.B. Mendonça Junior, A.G. Wanderley, R.P. Neves and J.V. dos Anjos, Molecules, 17, 5882 (2012); https://doi.org/10.3390/molecules17055882
A.A.H. Ahmad Fuaad, F. Azmi, M. Skwarczynski and I. Toth, Molecules, 18, 13148 (2013); https://doi.org/10.3390/molecules181113148
T. Kantaria, T. Kantaria, G. Titvinidze, G. Otinashvili, N. Kupatadze, N. Zavradashvili, D. Tugushi and R. Katsarava, Int. J. Polym. Sci., 2018, 6798258 (2018); https://doi.org/10.1155/2018/6798258
J.M. Aizpurua, R.M. Fratila, Z. Monasterio, N. Pérez-Esnaola, E. Andreieff, A. Irastorza and M. Sagartzazu-Aizpurua, New J. Chem., 38, 474 (2014); https://doi.org/10.1039/C3NJ00667K
I. Abdelhedi-Miladi, M.M. Obadia, I. Allaoua, A. Serghei, H.B. Romdhane and E. Drockenmuller, Macromol. Chem. Phys., 215, 2229 (2014); https://doi.org/10.1002/macp.201400182
D.-L. Mo, D.J. Wink and L.L. Anderson, Chem. Eur. J., 20, 13217 (2014); https://doi.org/10.1002/chem.201403268
S. Sinnwell, A.J. Inglis, M.H. Stenzel and C. Barner-Kowollik, Macromol. Rapid Commun., 29, 1090 (2008); https://doi.org/10.1002/marc.200800233
C.N. Urbani, C.A. Bell, D. Lonsdale, M.R. Whittaker and M.J. Monteiro, Macromolecules, 41, 76 (2008); https://doi.org/10.1021/ma701993w
D.E. Lonsdale, C.A. Bell and M.J. Monteiro, Macromolecules, 43, 3331 (2010); https://doi.org/10.1021/ma902597p