Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
An Overview of Physical Properties of Fruit Wastes Mediated Green Synthesized Transition Metal Oxide Nanoparticles and Its Applications
Corresponding Author(s) : Ajay Singh
Asian Journal of Chemistry,
Vol. 35 No. 3 (2023): Vol 35 Issue 3, 2023
Abstract
Different fruit peel wastes have a scope of utilizing in green synthesis of various transition metal oxide nanoparticles (TrMONPs). This articles reveals about the physical properties and their applications of green synthesized TrMONPs mediated through fruit peel wastes. Various transition metal nanoparticles like Ag, Au, Ti, Zn, Cu, Fe, Ni, Pd have been synthesized successfully by peels of mango, banana, pomegranate, apple and other citrus fruits. The SEM analysis revealed that the most of the synthesized silver nanoparticles were spherical in the range of 10 to 15 nm and have wide applications as antimicrobial agents, sensors, conducting materials, etc. ZnONPs were synthesized by mediated through most of the fruit peels found in range of 20 to 50 nm (spherical shape) with applications as photocatalyst. TiO2 nano-particles synthesized were spherical and hexagonal with high optical properties as well as UV absorbent nature targeting applications in cosmetics. The other metals viz. Au Cu, Ni, Pd nanoparticles synthesized mediated citrus fruit peels showed crystallinity. SEM analysis confirmed the surface morphology while XRD confirmed the high crystallinity of the metals nanoparticles. FT-IR have been widely used by the researchers for confirmation of new bond formation in nanoparticles. It is also evident that scandium and vanadium from 3d-series and other 4d-transition metals are less approachable and not used in fruit peel waste mediated green synthesis. The nanoparticles of Ni, Pd, Zr, Cu, Fe and other metals (TrOMNPs) have also been found with optimum surface area and size less than 10 nm for adsorption due to which these have application as catalyst in many organic synthesis. Other applications are biochar, bio-sorbent, carbon dots, edible films, heavy metals absorption, waste water treatment and in medicinal fields. Furthermore, approaches that can aided into development of these nanoparticles is the perspective towards incorporating green methods like laser ablation, sol-gel process, microwave heating, chemical vapour deposition and hydrothermal/solvothermal process into production of fruit wastes derived metal nanoparticles. Recent trends of researchers are towards nanosorbents for the removal of air and water pollutants along with other fields by using fruit and food wastes material.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Ferronato and V. Torretta, Int. J. Environ. Res. Public Health, 16, 1060 (2019); https://doi.org/10.3390/ijerph16061060
- H.I. Abdel-Shafy and M.S.M. Mansour, Egyptian J. Petrol., 27, 1275 (2018); https://doi.org/10.1016/j.ejpe.2018.07.003
- S.E. Vergara and G. Tchobanoglous, Ann. Rev. Environ. Resour., 37, 277 (2012); https://doi.org/10.1146/annurev-environ-050511-122532
- P.T. Williams, Waste Treatment and Disposal, John Wiley & Sons: London, New York (2005).
- G.P.J. Dijkema, M.A. Reuter and E.V. Verhoef, Waste Manag., 20, 633 (2000); https://doi.org/10.1016/S0956-053X(00)00052-0
- J. Cox, S. Giorgi, V. Sharp, K. Strange, D.C. Wilson and N. Blakey, Waste Manag. Res., 28, 193 (2010); https://doi.org/10.1177/0734242X103615
- S.-i. Sakai, J. Yano, Y. Hirai, M. Asari, R. Yanagawa, T. Matsuda, H. Yoshida, T. Yamada, N. Kajiwara, G. Suzuki, T. Kunisue, S. Takahashi, K. Tomoda, J. Wuttke, P. Mählitz, V.S. Rotter, M. Grosso, T.F. Astrup, J. Cleary, G.-J. Oh, L. Liu, J. Li, H.-w. Ma, N.K. Chi and S. Moore, J. Mater. Cycles Waste Manag., 19, 1295 (2017); https://doi.org/10.1007/s10163-017-0586-4
- C. Magrini, F. D’Addato and A. Bonoli, Waste Manag. Res., 38 (Suppl. 1), 3 (2020); https://doi.org/10.1177/0734242X198946
- K. Schanes, K. Dobernig and B. Gözet, J. Cleaner Prod., 182, 978 (2018); https://doi.org/10.1016/j.jclepro.2018.02.030
- A. Demirbas, Energy Convers. Manage., 52, 1280 (2011); https://doi.org/10.1016/j.enconman.2010.09.025
- N. Dixon and D.R.V. Jones, Geotext. Geomembr., 23, 205 (2005); https://doi.org/10.1016/j.geotexmem.2004.11.002
- T.S. Bisht, S.K. Sharma and L. Rawat, Int. J. Fermented Foods, 5, 73 (2016); https://doi.org/10.5958/2321-712X.2016.00009.0
- S. Bhushan, K. Kalia, M. Sharma, B. Singh and P.S. Ahuja, Crit. Rev. Biotechnol., 28, 285 (2008); https://doi.org/10.1080/07388550802368895
- S. Rafiq, R. Kaul, S. Sofi, N. Bashir, F. Nazir and G.A. Nayik, J. Saudi Soc. Agric. Sci., 17, 351 (2018); https://doi.org/10.1016/j.jssas.2016.07.006
- R.V. Joshi, J. Solid Waste Technol. Manage., 33, 142 (2007).
- M.K. Morsy, R. Elsabagh and V. Trinetta, Food Control, 92, 249 (2018); https://doi.org/10.1016/j.foodcont.2018.04.061
- M. Jevsnik, A. Ovca, M. Bauer, R. Fink, M. Oder and F. Sevsek, Food Control, 31, 284 (2013); https://doi.org/10.1016/j.foodcont.2012.10.003
- S. Biswas, M. Niu, J.A.D.R.N. Appuhamy, A.B. Leytem, R.S. Dungan, E. Kebreab and P. Pandey, Livest. Sci., 194, 17 (2016); https://doi.org/10.1016/j.livsci.2016.10.011
- K.M. Soto, C.T. Quezada-Cervantes, M. Hernandez-Iturriaga, G. LunaBárcenas, R. Vazquez-Duhalt and S. endoza, LWT, 103, 293 (2019); https://doi.org/10.1016/j.lwt.2019.01.023
- J.K. Patra and K.H. Baek, Int. J. Nanomedicine, 10, 7253 (2015); https://doi.org/10.2147/IJN.S95483
- S. Ali, M.R. Shah, S. Hussain, S. Khan, A. Latif, M. Ahmad and M. Ali, J. Cluster Sci., 33, 413 (2022); https://doi.org/10.1007/s10876-021-01978-w
- N.A. Tian, Z.Y. Zhou and S.-G. Sun, Chem. Commun., 1502, 1502 (2009); https://doi.org/10.1039/b819751b
- A. Annu, S. Ahmed, G. Kaur, P. Sharma, S. Singh and S. Ikram, J. Appl. Biomed., 16, 221 (2018); https://doi.org/10.1016/j.jab.2018.02.002
- B. Yang, F. Qi, J. Tan, T. Yu and C. Qu, Appl. Sci., 9, 2423 (2019); https://doi.org/10.3390/app9122423
- S. Ali, X. Chen, M.A. Shah, M. Ali, M. Zareef, M. Arslan, S. Ahmad, T. Jiao, H. Li and Q. Chen, Food Chem., 359, 129912 (2021); https://doi.org/10.1016/j.foodchem.2021.129912
- M. Golmohammadi, M. Honarmand and S. Ghanbari, Spectrochim, Acta A: Mol. Biomol. Spectrosc., 229, 117961 (2019); https://doi.org/10.1016/j.saa.2019.117961
- M. Umadevi, M.R. Bindhu and V. Sathe, J. Mater. Sci. Technol., 29, 317 (2013); https://doi.org/10.1016/j.jmst.2013.02.002
- H. Veisi, S. Hemmati and M. Qomi, Tetrahedron Lett., 58, 4191 (2017); https://doi.org/10.1016/j.tetlet.2017.09.057
- D. Baruah, R.N.S. Yadav, A. Yadav and A.M. Das, J. Photochem. Photobiol. B: Biol., 201, 111649 (2019); https://doi.org/10.1016/j.jphotobiol.2019.111649
- R. Renuka, K.R. Devi, M. Sivakami, T. Thilagavathi, R. Uthrakumar and K. Kaviyarasu, Biocatal. Agric. Biotechnol., 24, 101567 (2020); https://doi.org/10.1016/j.bcab.2020.101567
- Y.C. Liu, J. Li, J. Ahn, J. Pu, E.J. Rupa, Y. Huo and D.C. Yang, Optik, 218, 165245 (2020); https://doi.org/10.1016/j.ijleo.2020.165245
- S.N.A.M. Sukri, M. Shameli, M.M.-T. Wong, S.Y. Teow, J. Chew and N.A. Ismail, J. Mol. Struct., 1189, 57 (2019); https://doi.org/10.1016/j.molstruc.2019.04.026
- S. Phongtongpasuk, S. Poadang and N. Yongvanich, Energy Procedia, 89, 239 (2016); https://doi.org/10.1016/j.egypro.2016.05.031
- B. Kumar, K. Smita, A. Debut and L. Cumbal, Trans. Nonferrous Met. Soc. China, 26, 2363 (2016); https://doi.org/10.1016/S1003-6326(16)64359-5
- I. Jahan, F. Erci and I. Isildak, J. Drug Deliv. Sci. Technol., 61, 102172 (2021); https://doi.org/10.1016/j.jddst.2020.102172
- A. Annu, S. Ahmed, G. Kaur, P. Sharma, S. Singh and S. Ikram, J. Appl. Biomed., 16, 221 (2018); https://doi.org/10.1016/j.jab.2018.02.002
- M.A. Odeniyi, V.C. Okumah, B.C. Adebayo-Tayo and O.A. Odeniyi, Sustain. Chem. Pharm., 15, 100197 (2020); https://doi.org/10.1016/j.scp.2019.100197
- T. Dutta, S.K. Chowdhury, N.N. Ghosh, A.P. Chattopadhyay, M. Das and V. Mandal, J. Mol. Struct., 1247, 131361 (2022); https://doi.org/10.1016/j.molstruc.2021.131361
- R. Garg, M. Kumar, M. Kumar and S. Dhiman, Mater. Today Proc., 46, 6665 (2021); https://doi.org/10.1016/j.matpr.2021.04.124
- R. Khani, B. Roostaei, G. Bagherzade and M. Moudi, J. Mol. Liq., 255, 541 (2018); https://doi.org/10.1016/j.molliq.2018.02.010
- E.C. Okpara, O.E. Ogunjinmi, O.A. Oyewo, O.E. Fayemi and D.C. Onwudiwe, Heliyon, 7, e08571 (2021); https://doi.org/10.1016/j.heliyon.2021.e08571
- B.R. Gangapuram, R. Bandi, M. Alle, R. Dadigala, G.M. Kotu and V. Guttena, J. Mol. Struct., 1167, 305 (2018);
- https://doi.org/10.1016/j.molstruc.2018.05.004
- G. Lakshmanan, A. Sathiyaseelan, P.T. Kalaichelvan and K. Murugesan, Karbala Int. J. Modern Sci., 4, 61 (2018); https://doi.org/10.1016/j.kijoms.2017.10.007
- M.T. El-Saadony, A.M. Saad, A.A. Najjar, S.O. Alzahrani, F.M. Alkhatib, M.E. Shafi, E. Selem, E.-S.M. Desoky, S.E.E. Fouda, A.M. El-Tahan and M.A.A. Hassan, Saudi J. Biol. Sci., 28, 4461 (2021); https://doi.org/10.1016/j.sjbs.2021.04.043
- N.T. Bui, V.H. Nguyen, D.T. Le, T.T.V. Tran and T.H. Bui, Environ. Technol. Innov., 23, 101773 (2021); https://doi.org/10.1016/j.eti.2021.101773
- R. Sharma, Mater. Today Proc., 44, 1995 (2021); https://doi.org/10.1016/j.matpr.2020.12.118
- S.M. Roopan, A. Bharathi, A. Prabhakarn, A.A. Rahuman, K. Velayutham, G. Rajakumar, R.D. Padmaja, M. Lekshmi and G. Madhumitha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 98, 86 (2012); https://doi.org/10.1016/j.saa.2012.08.055
- Y. Wei, Z. Fang, L. Zheng, L. Tan and E.P. Tsang, Mater. Lett., 185, 384 (2016); https://doi.org/10.1016/j.matlet.2016.09.029
- S. Venkateswarlu, Y.S. Rao, T. Balaji, B. Prathima and N.V.V. Jyothi, Mater. Lett., 100, 241 (2013); https://doi.org/10.1016/j.matlet.2013.03.018
- G.K. Deokar and A.G. Ingale, RSC Adv., 6, 74620 (2016); https://doi.org/10.1039/C6RA14567A
- K.G. Rao, C. Ashok, K.V. Rao, C.S. Chakra and V. Rajendar, Int. J. Multidiscpl. Adv. Res. Trends, 2, 82 (2015).
- R. Yuvakkumar, J. Suresh, A.J. Nathanael, M. Sundrarajan and S.I. Hong, Mater. Lett., 128, 170 (2014); https://doi.org/10.1016/j.matlet.2014.04.112
- M.S. Akhtar, J. Panwar and Y.-S. Yun, ACS Sustain. Chem. Eng., 1, 591 (2013); https://doi.org/10.1021/sc300118u
- P.R. Ghosh, D. Fawcett, S.B. Sharma and G.E.J. Poinern, Materials, 10, 852 (2017); https://doi.org/10.3390/ma10080852
- M. Shah, D. Fawcett, S. Sharma, S.K. Tripathy and G.E.J. Poinern, Materials, 8, 7278 (2015); https://doi.org/10.3390/ma8115377
- D. Fawcett, J. Verduin, M. Shah, S.B. Sharma and G.E.J. Poinern, J. Nanosci., 2017, 8013850 (2017); https://doi.org/10.1155/2017/8013850
- K. Thakkar, S.S. Mhatre and R.Y. Parikh, Nanomedicine, 6, 257 (2010); https://doi.org/10.1016/j.nano.2009.07.002
- H. Kumar, K. Bhardwaj, K. Kuèa, A. Kalia, E. Nepovimova, R. Verma and D. Kumar, Nanomaterials, 10, 766 (2020); https://doi.org/10.3390/nano10040766
- K. Naganathan and S. Thirunavukkarasu, IOP Conf. Ser.: Mater. Sci. Eng., 191, 12009 (2017); https://doi.org/10.1088/1757-899X/191/1/012009
- F.G. Samreen, R. Muzaffar, M. Nawaz, S. Gul and M.A.R. Basra, Preprints, 2018, 2018110417 (2018); https://doi.org/10.20944/preprints201811.0417.v1
- N. Ajmal, K. Saraswat, V. Sharma and M.E. Zafar, Bull. Environ. Pharmacol. Life Sci., 5, 91 (2016).
- T. Kokila, P.S. Ramesh and D. Geetha, Appl. Nanosci., 5, 911 (2015); https://doi.org/10.1007/s13204-015-0401-2
- O.J. Nava, C.A. Soto-Robles, C.M. Gómez-Gutiérrez, A.R. Vilchis-Nestor, A. Castro-Beltrán, A. Olivas and P.A. Luque, J. Mol. Struct., 1147, 1 (2017); https://doi.org/10.1016/j.molstruc.2017.06.078
- H.M.M. Ibrahim, J. Radiat. Res. Appl. Sci., 8, 265 (2015); https://doi.org/10.1016/j.jrras.2015.01.007
- M. Shanmugavadivu, S. Kuppusamy and R. Ranjithkumar, Am. J. Adv. Drug Deliv., 2, 174 (2014).
- C.H.N. de Barros, G. Cruz, W. Mayrink and L. Tasic, Nanotechnol. Sci. Appl., 11, 1 (2018); https://doi.org/10.2147/NSA.S156115
- H. Fan, M. Zhang, B. Bhandari and C.H. Yang, Trends Food Sci. Technol., 95, 86 (2020); https://doi.org/10.1016/j.tifs.2019.11.008
- H. Kumar, K. Kuèa, S.K. Bhatia, K. Saini, A. Kaushal, R. Verma, T.C. Bhalla and D. Kumar, Sensors, 20, 1966 (2020); https://doi.org/10.3390/s20071966
- S. Iravani and R.S. Varma, Environ. Chem. Lett., 18, 703 (2020); https://doi.org/10.1007/s10311-020-00984-0
- X.-Y. Jiao, L.S. Li, S. Qin, Y. Zhang, K. Huang and L. Xu, Colloids Surf. A Physicochem. Eng. Asp., 577, 306 (2019); https://doi.org/10.1016/j.colsurfa.2019.05.073
- S.A.A. Vandarkuzhali, S. Natarajan, S. Jeyabalan, G. Sivaraman, S. Singaravadivel, S. Muthusubramanian and B. Viswanathan, ACS Omega, 3, 12584 (2018); https://doi.org/10.1021/acsomega.8b01146
- W. Lu, X. Qin, S. Liu, G. Chang, Y. Zhang, Y. Luo, A.M. Asiri, A.O. AlYoubi and X. Sun, Anal. Chem., 84, 5351 (2012); https://doi.org/10.1021/ac3007939
- H.J. Amith Yadav, B. Eraiah, R.B. Basavaraj, H. Nagabhushana, G.P. Darshan, S.C. Sharma, B. Daruka Prasad, R. Nithya and S. Shanthi, J. Alloys Compd., 742, 1006 (2018); https://doi.org/10.1016/j.jallcom.2017.12.251
- A. Prasannan and T. Imae, Ind. Eng. Chem. Res., 52, 15673 (2013); https://doi.org/10.1021/ie402421s
- B. Glaser, M. Parr, C. Braun and G. Kopolo, Nat. Geosci., 2, 2 (2009); https://doi.org/10.1038/ngeo395
- Z. Liu and F.-S. Zhang, J. Hazard. Mater., 167, 933 (2009); https://doi.org/10.1016/j.jhazmat.2009.01.085
- N. Zhou, H. Chen, J. Xi, D. Yao, Z. Zhou, Y. Tian and X. Lu, Bioresour. Technol., 232, 204 (2017); https://doi.org/10.1016/j.biortech.2017.01.074
- Q. Cao, Z. Huang, S. Liu and Y. Wu, Sci. Rep., 9, 11116 (2019); https://doi.org/10.1038/s41598-019-46983-2
- M. Selvanathan, K.T. Yann, C.H. Chung, A. Selvarajoo, S.K. Arumugasamy and V. Sethu, Water Air Soil Pollut., 228, 299 (2017); https://doi.org/10.1007/s11270-017-3472-8
- Y. Wu, L. Cha, Y. Fan, P. Fang, Z. Ming and H. Sha, Water Air Soil Pollut., 228, 405 (2017); https://doi.org/10.1007/s11270-017-3587-y
- B. Fu, C. Ge, L. Yue, J. Luo, D. Feng, H. Deng and H. Yu, BioResources, 11, 9017 (2016); https://doi.org/10.15376/biores.11.4.9017-9035
- J. Wu, J. Yang, P. Feng, G. Huang, C. Xu and B. Lin, Chemosphere, 246, 125734 (2020); https://doi.org/10.1016/j.chemosphere.2019.125734
- K. Vijayaraghavan and Y.-S. Yun, Biotechnol. Adv., 26, 266 (2008); https://doi.org/10.1016/j.biotechadv.2008.02.002
- A.H. Jawad, A.M. Kadhum and Y.S. Ngoh, Desalination Water Treat., 109, 231 (2018); https://doi.org/10.5004/dwt.2018.21976
- N.E. Ibisi and C.A. Asoluka, Chem. Int., 4, 52 (2018); https://doi.org/10.31221/osf.io/yrpvn
- I. Enniya and A. Jourani, J. Mater. Environ. Sci., 8, 4573 (2017); https://doi.org/10.26872/jmes.2017.8.12.883
- R. Krishni, K.Y. Foo and B. Hameed, Desalination Water Treat., 52, 6096 (2014); https://doi.org/10.1080/19443994.2013.815686
- L.A. RomeroCano, L.V. GonzálezGutiérrez, L.A. BaldenegroPérez and F. CarrascoMarin, J. Chem. Technol. Biotechnol., 92, 1650 (2017); https://doi.org/10.1002/jctb.5161
- M.L. Zambrano-Zaragoza, R. González-Reza, N. Mendoza-Muñoz, V. Miranda-Linares, T.F. Bernal-Couoh, S. Mendoza-Elvira and D. Quintanar-Guerrero, Int. J. Mol. Sci., 19, 705 (2018); https://doi.org/10.3390/ijms19030705
- A. Etxabide, M. Urdanpilleta, I. GómezArriaran, K. De La Caba and P. Guerrero, React. Funct. Polym., 117, 140 (2017); https://doi.org/10.1016/j.reactfunctpolym.2017.04.005
- H.A. Iman Al-Anbari, A.M. Dakhel, A. Adnan, Plant Arch., 19(Suppl. 1), 1006 (2019).
- S.-H. Shin, Y. Chang, M. Lacroix and J. Han, LWT, 84, 183 (2017); https://doi.org/10.1016/j.lwt.2017.05.054
- M. Moghadam, M. Salami, M. Mohammadian, M. Khodadadi and Z. Emam-Djomeh, Food Hydrocoll., 104, 105735 (2020); https://doi.org/10.1016/j.foodhyd.2020.105735
- Y. Alparslan, C. Metin, H.H. Yapici, T. Baygar, A. Günlü and T. Baygar, J. Food Saf. Food Qual., 68, 69 (2017); https://doi.org/10.2376/0003-925X-68-69
- D. Rahmawati, M. Chandra, S. Santoso and M.G. Puteri, AIP Conf. Proc., 1803, 020037 (2017); https://doi.org/10.1063/1.4973164
References
N. Ferronato and V. Torretta, Int. J. Environ. Res. Public Health, 16, 1060 (2019); https://doi.org/10.3390/ijerph16061060
H.I. Abdel-Shafy and M.S.M. Mansour, Egyptian J. Petrol., 27, 1275 (2018); https://doi.org/10.1016/j.ejpe.2018.07.003
S.E. Vergara and G. Tchobanoglous, Ann. Rev. Environ. Resour., 37, 277 (2012); https://doi.org/10.1146/annurev-environ-050511-122532
P.T. Williams, Waste Treatment and Disposal, John Wiley & Sons: London, New York (2005).
G.P.J. Dijkema, M.A. Reuter and E.V. Verhoef, Waste Manag., 20, 633 (2000); https://doi.org/10.1016/S0956-053X(00)00052-0
J. Cox, S. Giorgi, V. Sharp, K. Strange, D.C. Wilson and N. Blakey, Waste Manag. Res., 28, 193 (2010); https://doi.org/10.1177/0734242X103615
S.-i. Sakai, J. Yano, Y. Hirai, M. Asari, R. Yanagawa, T. Matsuda, H. Yoshida, T. Yamada, N. Kajiwara, G. Suzuki, T. Kunisue, S. Takahashi, K. Tomoda, J. Wuttke, P. Mählitz, V.S. Rotter, M. Grosso, T.F. Astrup, J. Cleary, G.-J. Oh, L. Liu, J. Li, H.-w. Ma, N.K. Chi and S. Moore, J. Mater. Cycles Waste Manag., 19, 1295 (2017); https://doi.org/10.1007/s10163-017-0586-4
C. Magrini, F. D’Addato and A. Bonoli, Waste Manag. Res., 38 (Suppl. 1), 3 (2020); https://doi.org/10.1177/0734242X198946
K. Schanes, K. Dobernig and B. Gözet, J. Cleaner Prod., 182, 978 (2018); https://doi.org/10.1016/j.jclepro.2018.02.030
A. Demirbas, Energy Convers. Manage., 52, 1280 (2011); https://doi.org/10.1016/j.enconman.2010.09.025
N. Dixon and D.R.V. Jones, Geotext. Geomembr., 23, 205 (2005); https://doi.org/10.1016/j.geotexmem.2004.11.002
T.S. Bisht, S.K. Sharma and L. Rawat, Int. J. Fermented Foods, 5, 73 (2016); https://doi.org/10.5958/2321-712X.2016.00009.0
S. Bhushan, K. Kalia, M. Sharma, B. Singh and P.S. Ahuja, Crit. Rev. Biotechnol., 28, 285 (2008); https://doi.org/10.1080/07388550802368895
S. Rafiq, R. Kaul, S. Sofi, N. Bashir, F. Nazir and G.A. Nayik, J. Saudi Soc. Agric. Sci., 17, 351 (2018); https://doi.org/10.1016/j.jssas.2016.07.006
R.V. Joshi, J. Solid Waste Technol. Manage., 33, 142 (2007).
M.K. Morsy, R. Elsabagh and V. Trinetta, Food Control, 92, 249 (2018); https://doi.org/10.1016/j.foodcont.2018.04.061
M. Jevsnik, A. Ovca, M. Bauer, R. Fink, M. Oder and F. Sevsek, Food Control, 31, 284 (2013); https://doi.org/10.1016/j.foodcont.2012.10.003
S. Biswas, M. Niu, J.A.D.R.N. Appuhamy, A.B. Leytem, R.S. Dungan, E. Kebreab and P. Pandey, Livest. Sci., 194, 17 (2016); https://doi.org/10.1016/j.livsci.2016.10.011
K.M. Soto, C.T. Quezada-Cervantes, M. Hernandez-Iturriaga, G. LunaBárcenas, R. Vazquez-Duhalt and S. endoza, LWT, 103, 293 (2019); https://doi.org/10.1016/j.lwt.2019.01.023
J.K. Patra and K.H. Baek, Int. J. Nanomedicine, 10, 7253 (2015); https://doi.org/10.2147/IJN.S95483
S. Ali, M.R. Shah, S. Hussain, S. Khan, A. Latif, M. Ahmad and M. Ali, J. Cluster Sci., 33, 413 (2022); https://doi.org/10.1007/s10876-021-01978-w
N.A. Tian, Z.Y. Zhou and S.-G. Sun, Chem. Commun., 1502, 1502 (2009); https://doi.org/10.1039/b819751b
A. Annu, S. Ahmed, G. Kaur, P. Sharma, S. Singh and S. Ikram, J. Appl. Biomed., 16, 221 (2018); https://doi.org/10.1016/j.jab.2018.02.002
B. Yang, F. Qi, J. Tan, T. Yu and C. Qu, Appl. Sci., 9, 2423 (2019); https://doi.org/10.3390/app9122423
S. Ali, X. Chen, M.A. Shah, M. Ali, M. Zareef, M. Arslan, S. Ahmad, T. Jiao, H. Li and Q. Chen, Food Chem., 359, 129912 (2021); https://doi.org/10.1016/j.foodchem.2021.129912
M. Golmohammadi, M. Honarmand and S. Ghanbari, Spectrochim, Acta A: Mol. Biomol. Spectrosc., 229, 117961 (2019); https://doi.org/10.1016/j.saa.2019.117961
M. Umadevi, M.R. Bindhu and V. Sathe, J. Mater. Sci. Technol., 29, 317 (2013); https://doi.org/10.1016/j.jmst.2013.02.002
H. Veisi, S. Hemmati and M. Qomi, Tetrahedron Lett., 58, 4191 (2017); https://doi.org/10.1016/j.tetlet.2017.09.057
D. Baruah, R.N.S. Yadav, A. Yadav and A.M. Das, J. Photochem. Photobiol. B: Biol., 201, 111649 (2019); https://doi.org/10.1016/j.jphotobiol.2019.111649
R. Renuka, K.R. Devi, M. Sivakami, T. Thilagavathi, R. Uthrakumar and K. Kaviyarasu, Biocatal. Agric. Biotechnol., 24, 101567 (2020); https://doi.org/10.1016/j.bcab.2020.101567
Y.C. Liu, J. Li, J. Ahn, J. Pu, E.J. Rupa, Y. Huo and D.C. Yang, Optik, 218, 165245 (2020); https://doi.org/10.1016/j.ijleo.2020.165245
S.N.A.M. Sukri, M. Shameli, M.M.-T. Wong, S.Y. Teow, J. Chew and N.A. Ismail, J. Mol. Struct., 1189, 57 (2019); https://doi.org/10.1016/j.molstruc.2019.04.026
S. Phongtongpasuk, S. Poadang and N. Yongvanich, Energy Procedia, 89, 239 (2016); https://doi.org/10.1016/j.egypro.2016.05.031
B. Kumar, K. Smita, A. Debut and L. Cumbal, Trans. Nonferrous Met. Soc. China, 26, 2363 (2016); https://doi.org/10.1016/S1003-6326(16)64359-5
I. Jahan, F. Erci and I. Isildak, J. Drug Deliv. Sci. Technol., 61, 102172 (2021); https://doi.org/10.1016/j.jddst.2020.102172
A. Annu, S. Ahmed, G. Kaur, P. Sharma, S. Singh and S. Ikram, J. Appl. Biomed., 16, 221 (2018); https://doi.org/10.1016/j.jab.2018.02.002
M.A. Odeniyi, V.C. Okumah, B.C. Adebayo-Tayo and O.A. Odeniyi, Sustain. Chem. Pharm., 15, 100197 (2020); https://doi.org/10.1016/j.scp.2019.100197
T. Dutta, S.K. Chowdhury, N.N. Ghosh, A.P. Chattopadhyay, M. Das and V. Mandal, J. Mol. Struct., 1247, 131361 (2022); https://doi.org/10.1016/j.molstruc.2021.131361
R. Garg, M. Kumar, M. Kumar and S. Dhiman, Mater. Today Proc., 46, 6665 (2021); https://doi.org/10.1016/j.matpr.2021.04.124
R. Khani, B. Roostaei, G. Bagherzade and M. Moudi, J. Mol. Liq., 255, 541 (2018); https://doi.org/10.1016/j.molliq.2018.02.010
E.C. Okpara, O.E. Ogunjinmi, O.A. Oyewo, O.E. Fayemi and D.C. Onwudiwe, Heliyon, 7, e08571 (2021); https://doi.org/10.1016/j.heliyon.2021.e08571
B.R. Gangapuram, R. Bandi, M. Alle, R. Dadigala, G.M. Kotu and V. Guttena, J. Mol. Struct., 1167, 305 (2018);
https://doi.org/10.1016/j.molstruc.2018.05.004
G. Lakshmanan, A. Sathiyaseelan, P.T. Kalaichelvan and K. Murugesan, Karbala Int. J. Modern Sci., 4, 61 (2018); https://doi.org/10.1016/j.kijoms.2017.10.007
M.T. El-Saadony, A.M. Saad, A.A. Najjar, S.O. Alzahrani, F.M. Alkhatib, M.E. Shafi, E. Selem, E.-S.M. Desoky, S.E.E. Fouda, A.M. El-Tahan and M.A.A. Hassan, Saudi J. Biol. Sci., 28, 4461 (2021); https://doi.org/10.1016/j.sjbs.2021.04.043
N.T. Bui, V.H. Nguyen, D.T. Le, T.T.V. Tran and T.H. Bui, Environ. Technol. Innov., 23, 101773 (2021); https://doi.org/10.1016/j.eti.2021.101773
R. Sharma, Mater. Today Proc., 44, 1995 (2021); https://doi.org/10.1016/j.matpr.2020.12.118
S.M. Roopan, A. Bharathi, A. Prabhakarn, A.A. Rahuman, K. Velayutham, G. Rajakumar, R.D. Padmaja, M. Lekshmi and G. Madhumitha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 98, 86 (2012); https://doi.org/10.1016/j.saa.2012.08.055
Y. Wei, Z. Fang, L. Zheng, L. Tan and E.P. Tsang, Mater. Lett., 185, 384 (2016); https://doi.org/10.1016/j.matlet.2016.09.029
S. Venkateswarlu, Y.S. Rao, T. Balaji, B. Prathima and N.V.V. Jyothi, Mater. Lett., 100, 241 (2013); https://doi.org/10.1016/j.matlet.2013.03.018
G.K. Deokar and A.G. Ingale, RSC Adv., 6, 74620 (2016); https://doi.org/10.1039/C6RA14567A
K.G. Rao, C. Ashok, K.V. Rao, C.S. Chakra and V. Rajendar, Int. J. Multidiscpl. Adv. Res. Trends, 2, 82 (2015).
R. Yuvakkumar, J. Suresh, A.J. Nathanael, M. Sundrarajan and S.I. Hong, Mater. Lett., 128, 170 (2014); https://doi.org/10.1016/j.matlet.2014.04.112
M.S. Akhtar, J. Panwar and Y.-S. Yun, ACS Sustain. Chem. Eng., 1, 591 (2013); https://doi.org/10.1021/sc300118u
P.R. Ghosh, D. Fawcett, S.B. Sharma and G.E.J. Poinern, Materials, 10, 852 (2017); https://doi.org/10.3390/ma10080852
M. Shah, D. Fawcett, S. Sharma, S.K. Tripathy and G.E.J. Poinern, Materials, 8, 7278 (2015); https://doi.org/10.3390/ma8115377
D. Fawcett, J. Verduin, M. Shah, S.B. Sharma and G.E.J. Poinern, J. Nanosci., 2017, 8013850 (2017); https://doi.org/10.1155/2017/8013850
K. Thakkar, S.S. Mhatre and R.Y. Parikh, Nanomedicine, 6, 257 (2010); https://doi.org/10.1016/j.nano.2009.07.002
H. Kumar, K. Bhardwaj, K. Kuèa, A. Kalia, E. Nepovimova, R. Verma and D. Kumar, Nanomaterials, 10, 766 (2020); https://doi.org/10.3390/nano10040766
K. Naganathan and S. Thirunavukkarasu, IOP Conf. Ser.: Mater. Sci. Eng., 191, 12009 (2017); https://doi.org/10.1088/1757-899X/191/1/012009
F.G. Samreen, R. Muzaffar, M. Nawaz, S. Gul and M.A.R. Basra, Preprints, 2018, 2018110417 (2018); https://doi.org/10.20944/preprints201811.0417.v1
N. Ajmal, K. Saraswat, V. Sharma and M.E. Zafar, Bull. Environ. Pharmacol. Life Sci., 5, 91 (2016).
T. Kokila, P.S. Ramesh and D. Geetha, Appl. Nanosci., 5, 911 (2015); https://doi.org/10.1007/s13204-015-0401-2
O.J. Nava, C.A. Soto-Robles, C.M. Gómez-Gutiérrez, A.R. Vilchis-Nestor, A. Castro-Beltrán, A. Olivas and P.A. Luque, J. Mol. Struct., 1147, 1 (2017); https://doi.org/10.1016/j.molstruc.2017.06.078
H.M.M. Ibrahim, J. Radiat. Res. Appl. Sci., 8, 265 (2015); https://doi.org/10.1016/j.jrras.2015.01.007
M. Shanmugavadivu, S. Kuppusamy and R. Ranjithkumar, Am. J. Adv. Drug Deliv., 2, 174 (2014).
C.H.N. de Barros, G. Cruz, W. Mayrink and L. Tasic, Nanotechnol. Sci. Appl., 11, 1 (2018); https://doi.org/10.2147/NSA.S156115
H. Fan, M. Zhang, B. Bhandari and C.H. Yang, Trends Food Sci. Technol., 95, 86 (2020); https://doi.org/10.1016/j.tifs.2019.11.008
H. Kumar, K. Kuèa, S.K. Bhatia, K. Saini, A. Kaushal, R. Verma, T.C. Bhalla and D. Kumar, Sensors, 20, 1966 (2020); https://doi.org/10.3390/s20071966
S. Iravani and R.S. Varma, Environ. Chem. Lett., 18, 703 (2020); https://doi.org/10.1007/s10311-020-00984-0
X.-Y. Jiao, L.S. Li, S. Qin, Y. Zhang, K. Huang and L. Xu, Colloids Surf. A Physicochem. Eng. Asp., 577, 306 (2019); https://doi.org/10.1016/j.colsurfa.2019.05.073
S.A.A. Vandarkuzhali, S. Natarajan, S. Jeyabalan, G. Sivaraman, S. Singaravadivel, S. Muthusubramanian and B. Viswanathan, ACS Omega, 3, 12584 (2018); https://doi.org/10.1021/acsomega.8b01146
W. Lu, X. Qin, S. Liu, G. Chang, Y. Zhang, Y. Luo, A.M. Asiri, A.O. AlYoubi and X. Sun, Anal. Chem., 84, 5351 (2012); https://doi.org/10.1021/ac3007939
H.J. Amith Yadav, B. Eraiah, R.B. Basavaraj, H. Nagabhushana, G.P. Darshan, S.C. Sharma, B. Daruka Prasad, R. Nithya and S. Shanthi, J. Alloys Compd., 742, 1006 (2018); https://doi.org/10.1016/j.jallcom.2017.12.251
A. Prasannan and T. Imae, Ind. Eng. Chem. Res., 52, 15673 (2013); https://doi.org/10.1021/ie402421s
B. Glaser, M. Parr, C. Braun and G. Kopolo, Nat. Geosci., 2, 2 (2009); https://doi.org/10.1038/ngeo395
Z. Liu and F.-S. Zhang, J. Hazard. Mater., 167, 933 (2009); https://doi.org/10.1016/j.jhazmat.2009.01.085
N. Zhou, H. Chen, J. Xi, D. Yao, Z. Zhou, Y. Tian and X. Lu, Bioresour. Technol., 232, 204 (2017); https://doi.org/10.1016/j.biortech.2017.01.074
Q. Cao, Z. Huang, S. Liu and Y. Wu, Sci. Rep., 9, 11116 (2019); https://doi.org/10.1038/s41598-019-46983-2
M. Selvanathan, K.T. Yann, C.H. Chung, A. Selvarajoo, S.K. Arumugasamy and V. Sethu, Water Air Soil Pollut., 228, 299 (2017); https://doi.org/10.1007/s11270-017-3472-8
Y. Wu, L. Cha, Y. Fan, P. Fang, Z. Ming and H. Sha, Water Air Soil Pollut., 228, 405 (2017); https://doi.org/10.1007/s11270-017-3587-y
B. Fu, C. Ge, L. Yue, J. Luo, D. Feng, H. Deng and H. Yu, BioResources, 11, 9017 (2016); https://doi.org/10.15376/biores.11.4.9017-9035
J. Wu, J. Yang, P. Feng, G. Huang, C. Xu and B. Lin, Chemosphere, 246, 125734 (2020); https://doi.org/10.1016/j.chemosphere.2019.125734
K. Vijayaraghavan and Y.-S. Yun, Biotechnol. Adv., 26, 266 (2008); https://doi.org/10.1016/j.biotechadv.2008.02.002
A.H. Jawad, A.M. Kadhum and Y.S. Ngoh, Desalination Water Treat., 109, 231 (2018); https://doi.org/10.5004/dwt.2018.21976
N.E. Ibisi and C.A. Asoluka, Chem. Int., 4, 52 (2018); https://doi.org/10.31221/osf.io/yrpvn
I. Enniya and A. Jourani, J. Mater. Environ. Sci., 8, 4573 (2017); https://doi.org/10.26872/jmes.2017.8.12.883
R. Krishni, K.Y. Foo and B. Hameed, Desalination Water Treat., 52, 6096 (2014); https://doi.org/10.1080/19443994.2013.815686
L.A. RomeroCano, L.V. GonzálezGutiérrez, L.A. BaldenegroPérez and F. CarrascoMarin, J. Chem. Technol. Biotechnol., 92, 1650 (2017); https://doi.org/10.1002/jctb.5161
M.L. Zambrano-Zaragoza, R. González-Reza, N. Mendoza-Muñoz, V. Miranda-Linares, T.F. Bernal-Couoh, S. Mendoza-Elvira and D. Quintanar-Guerrero, Int. J. Mol. Sci., 19, 705 (2018); https://doi.org/10.3390/ijms19030705
A. Etxabide, M. Urdanpilleta, I. GómezArriaran, K. De La Caba and P. Guerrero, React. Funct. Polym., 117, 140 (2017); https://doi.org/10.1016/j.reactfunctpolym.2017.04.005
H.A. Iman Al-Anbari, A.M. Dakhel, A. Adnan, Plant Arch., 19(Suppl. 1), 1006 (2019).
S.-H. Shin, Y. Chang, M. Lacroix and J. Han, LWT, 84, 183 (2017); https://doi.org/10.1016/j.lwt.2017.05.054
M. Moghadam, M. Salami, M. Mohammadian, M. Khodadadi and Z. Emam-Djomeh, Food Hydrocoll., 104, 105735 (2020); https://doi.org/10.1016/j.foodhyd.2020.105735
Y. Alparslan, C. Metin, H.H. Yapici, T. Baygar, A. Günlü and T. Baygar, J. Food Saf. Food Qual., 68, 69 (2017); https://doi.org/10.2376/0003-925X-68-69
D. Rahmawati, M. Chandra, S. Santoso and M.G. Puteri, AIP Conf. Proc., 1803, 020037 (2017); https://doi.org/10.1063/1.4973164