Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Development of Polymeric Layer on Anode for Enhanced Hydrogen Generation in Microbial Electrolysis Cell
Asian Journal of Chemistry,
Vol. 29 No. 1 (2017): Vol 29 Issue 1
Abstract
Hydrogen is a green fuel with low carbon footprints and is gaining importance as a replacement for petroleum products. Majority of hydrogen production is from fossil fuels that may exhaust in near future. Producing hydrogen using microbial electrolysis cell is a novel approach which utilizes organic matter including waste water. The anode used in a conventional microbial electrolysis cell is usually graphite felt/cloth/plate. This work concentrates on exploring the option for coating a polymeric layer on electrode surface used as anode that boosts the affinity of microbes towards electrode and its impact on hydrogen production in microbial electrolysis cell. Conducting polymer material, polyaniline was synthesized on the surface of graphite felt anode. Experiments were conducted to evaluate the performance of the modified graphite anode in microbial electrolysis cell. The results proved that the microbial electrolysis cell having the modified anode is 30 % more efficient than the microbial electrolysis cell having conventional anode.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Hu, Y. Fan and H. Liu, Water Res., 42, 4172 (2008).
- U.S. Meda and M.R. Raj, Int. J. Eng. Sci. Res. Technol., 4, 452 (2015).
- B. Logan, Environ. Sci. Technol., 38, 160A (2004).
- P. Selembo, M.D. Merrill and B.E. Logan, J. Power Sources, 190, 271 (2009).
- H. Hu, Y. Fan and H. Liu, Int. J. Hydrogen Energy, 34, 8535 (2009).
- A.W. Jeremiasse, H.V.M. Hamelers and C.J.N. Buisman, Bioelectrochemistry, 78, 39 (2010).
- C. Li, L. Zhang, L. Ding, H. Ren and H. Cui, Biosens. Bioelectron., 26, 4169 (2011).
- A. Kundu, J.N. Sahu, G. Redzwan and M.A. Hashim, Int. J. Hydrogen Energy, 38, 1745 (2013).
- R. Chandra, U.S. Meda and R. Suresh, Int. J. Res. Eng. Technol., 3, 169 (2014).
- B. Stuart, Infrared Spectroscopy: Fundamental and Application, John Wiley & Sons, Ltd. (2004).
References
H. Hu, Y. Fan and H. Liu, Water Res., 42, 4172 (2008).
U.S. Meda and M.R. Raj, Int. J. Eng. Sci. Res. Technol., 4, 452 (2015).
B. Logan, Environ. Sci. Technol., 38, 160A (2004).
P. Selembo, M.D. Merrill and B.E. Logan, J. Power Sources, 190, 271 (2009).
H. Hu, Y. Fan and H. Liu, Int. J. Hydrogen Energy, 34, 8535 (2009).
A.W. Jeremiasse, H.V.M. Hamelers and C.J.N. Buisman, Bioelectrochemistry, 78, 39 (2010).
C. Li, L. Zhang, L. Ding, H. Ren and H. Cui, Biosens. Bioelectron., 26, 4169 (2011).
A. Kundu, J.N. Sahu, G. Redzwan and M.A. Hashim, Int. J. Hydrogen Energy, 38, 1745 (2013).
R. Chandra, U.S. Meda and R. Suresh, Int. J. Res. Eng. Technol., 3, 169 (2014).
B. Stuart, Infrared Spectroscopy: Fundamental and Application, John Wiley & Sons, Ltd. (2004).