Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fluorometric Detection of Al3+ Ion in Mixed Aqueous Solvent Based on Simple Schiff-Base Molecular Prob
Corresponding Author(s) : Sanju Das
Asian Journal of Chemistry,
Vol. 35 No. 2 (2023): Vol 35 Issue 2, 2023
Abstract
A simple fluorometric detection for Al3+ ion in mixed aqueous medium using a simple Schiff-base molecule through PET mechanism is discussed. The di-phenolic Schiff-base molecule (EAMHM) was synthesized by the condensation reaction of multiple phenolic aldehyde molecules with a diamine containing multiple aldehyde-reacting primary amine moieties. The extremely low fluorescence quantum yield for EAMHM is highly useful for the off-mode of fluorescence sensing purposes. Contrary to various other cations Ni2+, Mg2+, Co2+, Cu2+, Zn2+, Cr3+, Cd2+, Fe3+, Ba2+, Hg2+, the selective Al3+ ion induced large fluorescence enhancement can be employed to detect Al3+ even in the presence other bi- or tri-valent cations. Moreover, linear change in fluorescence intensity with Al3+ concentration is highly beneficial for ratiometric detection of unknown Al3+ concentrations. As revealed from various spectroscopic and theoretical calculations, EAMHM forms a 1:1 complex with Al3+ showing a large increase in fluorescence intensity. It has also been identified that efficient photo-induced electron transfer (PET) in free EAMHM is mainly responsible for its low fluorescence intensity, whereas the removal of such PET process during its complexation with Al3+ produces large fluorescence enhancement. The structural and electronic parameters of the free EAMHM and EAMHM-Al3+ complex have been analyzed using DFT-based theoretical calculations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Goswami, S. Paul and A. Manna, RSC Adv., 3, 10639 (2013); https://doi.org/10.1039/c3ra40984h
- R.E. Doherty, Environ. Forensics, 1, 83 (2000); https://doi.org/10.1006/enfo.2000.0011
- M.S. Golub, J.M. Donald, M.E. Gershwin and C.L. Keen, Neurotoxicol. Teratol., 11, 231 (1989); https://doi.org/10.1016/0892-0362(89)90064-0
- N. Fimreite, O.O. Hansen and H.C. Pettersen, Bull. Environ. Contam. Toxicol., 58, 1 (1997); https://doi.org/10.1007/s001289900292
- H. Wang, B. Wang, Z. Shi, X. Tang, W. Dou, Q. Han, Y. Zhang and W. Liu, Biosens. Bioelectron., 65, 91 (2015); https://doi.org/10.1016/j.bios.2014.10.018
- M. Iniya, D. Jeyanthi, K. Krishnaveni and D. Chellappa, J. Lumin., 157, 383 (2015); https://doi.org/10.1016/j.jlumin.2014.09.018
- A. Budimir, Acta Pharm., 61, 1 (2011); https://doi.org/10.2478/v10007-011-0006-6
- N.E.W. Alstad, B.M. Kjelsberg, L.A. Vollestad, E. Lydersen and A.B.S. Poleo, Environ. Pollut., 133, 333 (2005); https://doi.org/10.1016/j.envpol.2004.05.030
- S. Kim, J.Y. Noh, K.Y. Kim, J.H. Kim, H.K. Kang, S.W. Nam, S.H. Kim, S. Park, C. Kim and J. Kim, Inorg. Chem., 51, 3597 (2012); https://doi.org/10.1021/ic2024583
- Y. Lu, S. Huang, Y. Liu, S. He, L. Zhao and X. Zeng, Org. Lett., 13, 5274 (2011); https://doi.org/10.1021/ol202054v
- M. Venturini-Soriano and G. Berthon, J. Inorg. Biochem., 85, 143 (2001); https://doi.org/10.1016/S0162-0134(01)00206-9
- C. Pan, K. Wang, S. Ji, H. Wang, Z. Li, H. He and Y. Huo, RSC Adv., 7, 36007 (2017); https://doi.org/10.1039/C7RA05064J
- S. Muthusamy, K. Rajalakshmi, D. Zhu, W. Zhu, S. Wang, K.-B. Lee H. Xue and L. Zhao, Sens. Actuators B: Chem., 346, 130534 (2021); https://doi.org/10.1016/j.snb.2021.130534
- J. Ma, Y. Dong, Z. Yu, Y. Wu and Z. Zhao, New J. Chem., 46, 3348 (2022); https://doi.org/10.1039/D1NJ05919J
- E. Lambert, B. Chabut, S. Chardon-Noblat, A. Deronzier, G. Chottard, A. Bousseksou, J.-P. Tuchagues, J. Laugier, M. Bardet and J.-M. Latour, J. Am. Chem. Soc., 119, 9424 (1997); https://doi.org/10.1021/ja970345q
- J.V. Morris, M.A. Mahaney and J.R. Huber, J. Phys. Chem., 80, 969 (1976); https://doi.org/10.1021/j100550a010
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, R. Cammi, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J. Cioslowski, J.V. Ortiz and D.J. Fox, Gaussian, Inc., Wallingford CT, , Gaussian 09 Rev. A.1 (2009).
- Y. Sarkar, S. Das, A. Ray, S.K. Jewrajka, S. Hirota and P.P. Parui, Analyst, 141, 2030 (2016); https://doi.org/10.1039/C5AN02128F
- S. Biswas, S. Mukherjee, J. Bandyopadhyay, S. Samanta, I. Bhowmick, S. Das, D.K. Hazra, A. Ray and P.P. Parui, RSC Adv., 4, 9656 (2014); https://doi.org/10.1039/C4RA00069B
- D. Maity and T. Govindaraju, Eur. J. Inorg. Chem., 2011, 5479 (2011); https://doi.org/10.1002/ejic.201100772
- H.A. Benesi and J.H. Hildebrand, J. Am. Chem. Soc., 71, 2703 (1949); https://doi.org/10.1021/ja01176a030
References
S. Goswami, S. Paul and A. Manna, RSC Adv., 3, 10639 (2013); https://doi.org/10.1039/c3ra40984h
R.E. Doherty, Environ. Forensics, 1, 83 (2000); https://doi.org/10.1006/enfo.2000.0011
M.S. Golub, J.M. Donald, M.E. Gershwin and C.L. Keen, Neurotoxicol. Teratol., 11, 231 (1989); https://doi.org/10.1016/0892-0362(89)90064-0
N. Fimreite, O.O. Hansen and H.C. Pettersen, Bull. Environ. Contam. Toxicol., 58, 1 (1997); https://doi.org/10.1007/s001289900292
H. Wang, B. Wang, Z. Shi, X. Tang, W. Dou, Q. Han, Y. Zhang and W. Liu, Biosens. Bioelectron., 65, 91 (2015); https://doi.org/10.1016/j.bios.2014.10.018
M. Iniya, D. Jeyanthi, K. Krishnaveni and D. Chellappa, J. Lumin., 157, 383 (2015); https://doi.org/10.1016/j.jlumin.2014.09.018
A. Budimir, Acta Pharm., 61, 1 (2011); https://doi.org/10.2478/v10007-011-0006-6
N.E.W. Alstad, B.M. Kjelsberg, L.A. Vollestad, E. Lydersen and A.B.S. Poleo, Environ. Pollut., 133, 333 (2005); https://doi.org/10.1016/j.envpol.2004.05.030
S. Kim, J.Y. Noh, K.Y. Kim, J.H. Kim, H.K. Kang, S.W. Nam, S.H. Kim, S. Park, C. Kim and J. Kim, Inorg. Chem., 51, 3597 (2012); https://doi.org/10.1021/ic2024583
Y. Lu, S. Huang, Y. Liu, S. He, L. Zhao and X. Zeng, Org. Lett., 13, 5274 (2011); https://doi.org/10.1021/ol202054v
M. Venturini-Soriano and G. Berthon, J. Inorg. Biochem., 85, 143 (2001); https://doi.org/10.1016/S0162-0134(01)00206-9
C. Pan, K. Wang, S. Ji, H. Wang, Z. Li, H. He and Y. Huo, RSC Adv., 7, 36007 (2017); https://doi.org/10.1039/C7RA05064J
S. Muthusamy, K. Rajalakshmi, D. Zhu, W. Zhu, S. Wang, K.-B. Lee H. Xue and L. Zhao, Sens. Actuators B: Chem., 346, 130534 (2021); https://doi.org/10.1016/j.snb.2021.130534
J. Ma, Y. Dong, Z. Yu, Y. Wu and Z. Zhao, New J. Chem., 46, 3348 (2022); https://doi.org/10.1039/D1NJ05919J
E. Lambert, B. Chabut, S. Chardon-Noblat, A. Deronzier, G. Chottard, A. Bousseksou, J.-P. Tuchagues, J. Laugier, M. Bardet and J.-M. Latour, J. Am. Chem. Soc., 119, 9424 (1997); https://doi.org/10.1021/ja970345q
J.V. Morris, M.A. Mahaney and J.R. Huber, J. Phys. Chem., 80, 969 (1976); https://doi.org/10.1021/j100550a010
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, R. Cammi, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J. Cioslowski, J.V. Ortiz and D.J. Fox, Gaussian, Inc., Wallingford CT, , Gaussian 09 Rev. A.1 (2009).
Y. Sarkar, S. Das, A. Ray, S.K. Jewrajka, S. Hirota and P.P. Parui, Analyst, 141, 2030 (2016); https://doi.org/10.1039/C5AN02128F
S. Biswas, S. Mukherjee, J. Bandyopadhyay, S. Samanta, I. Bhowmick, S. Das, D.K. Hazra, A. Ray and P.P. Parui, RSC Adv., 4, 9656 (2014); https://doi.org/10.1039/C4RA00069B
D. Maity and T. Govindaraju, Eur. J. Inorg. Chem., 2011, 5479 (2011); https://doi.org/10.1002/ejic.201100772
H.A. Benesi and J.H. Hildebrand, J. Am. Chem. Soc., 71, 2703 (1949); https://doi.org/10.1021/ja01176a030