Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Nickel(II) Complexes of Octamethyl Tetraazamacrocycle and its N-Pendent Derivative: Syntheses, Characterization, Electrolytic Behaviour and Antimicrobial Activities
Corresponding Author(s) : Ismail M.M. Rahman
Asian Journal of Chemistry,
Vol. 35 No. 2 (2023): Vol 35 Issue 2, 2023
Abstract
Octamethyl tetraazamacrocycle, Me8[14]diene·2HClO4 and its three isomeric ligands (LA, LB and LC) were synthesized and characterized using analytical and spectroscopic data, and the antibacterial activities were evaluated against selected bacteria and yeast. Interaction of LC with excess acrylonitrile resulted in an N-pendent derivative (LCX). Square planar nickel(II) diperchlorate complex of LC, [NiLCα](ClO4)2, underwent axial addition reactions with KI and NaNO2 to yield six coordinated octahedral species, [NiLCαI2]·2H2O and [NiLCα(NO2)(ClO4)]. Five coordinated square pyramidal Ni(II) complexes, [NiLCXCl](ClO4), [NiLCX(NCS)](NO3) and [NiLCXI](NO3), were synthesized from Ni(II) salts and tetraazamacrocyclic ligand LCX. Among the complexes, [NiLCXCl](ClO4) was synthesized through the direct interaction of NiCl2 with LCX, followed by the subsequent addition of NaClO4·6H2O. On the other hand, [NiLCX(NCS)](NO3) and [NiLCXI](NO3) as well as octahedral [NiLCXBr2] and [NiLCX(NO2)(NO3)] were synthesized by the interaction of LCX with different Ni(II) salts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.G. Shankarwar, B.B. Nagolkar, V.A. Shelke and T.K. Chondhekar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 145, 188 (2015); https://doi.org/10.1016/j.saa.2015.02.006
- P. Gull, O.A. Dar, M.A. Malik and A.A. Hashmi, Microb. Pathog., 100, 237 (2016); https://doi.org/10.1016/j.micpath.2016.10.003
- S.G. Rzuczek, D.S. Pilch, A. Liu, L. Liu, E.J. LaVoie and J.E. Rice, J. Med. Chem., 53, 3632 (2010); https://doi.org/10.1021/jm1000612
- H.A. El-Boraey and O.A. El-Gammal, Spectrochim. Acta A Mol. Biomol. Spectrosc., 138, 553 (2015); https://doi.org/10.1016/j.saa.2014.11.015
- T. Chandra, B.J. Kraft, J.C. Huffman and J.M. Zaleski, Inorg. Chem., 42, 5158 (2003); https://doi.org/10.1021/ic030035a
- D.P. Singh, K. Kumar, S.S. Dhiman and J. Sharma, J. Enzyme Inhib. Med. Chem., 25, 21 (2010); https://doi.org/10.3109/14756360902932750
- A. Majkowska-Pilip and A. Bilewicz, J. Inorg. Biochem., 105, 313 (2011); https://doi.org/10.1016/j.jinorgbio.2010.11.003
- R. Schibli and A.P. Schubiger, Eur. J. Nucl. Med. Mol. Imaging, 29, 1529 (2002); https://doi.org/10.1007/s00259-002-0900-8
- B.L. Holman, A.G. Jones, J. Lister-James, A. Davison, M.J. Abrams, J.M. Kirshenbaum, S.S. Tumeh and R.J. English, J. Nucl. Med., 25, 1350 (1984).
- D. Piwnica-Worms, V.V. Rao, J.F. Kronauge and J.M. Croop, Biochemistry, 34, 12210 (1995); https://doi.org/10.1021/bi00038a015
- P. Gull, M.A. Malik, O.A. Dar and A.A. Hashmi, J. Mol. Struct., 1134, 734 (2017); https://doi.org/10.1016/j.molstruc.2017.01.033
- V. Sangwan and D.P. Singh, Vietnam J. Chem., 57, 543 (2019); https://doi.org/10.1002/vjch.201900058
- H.A. El-Boraey and O.A. El-Gammal, J. Incl. Phenom. Macrocycl. Chem., 90, 123 (2018); https://doi.org/10.1007/s10847-017-0774-9
- K.R. Chaudhari, A. Kunwar, N. Bhuvanesh and S. Dey, New J. Chem., 44, 7329 (2020); https://doi.org/10.1039/C9NJ06052A
- T.G. Roy, S.K.S. Hazari, B.K. Dey, H.A. Miah, C. Bader and D. Rehder, Eur. J. Inorg. Chem., 2004, 4115 (2004); https://doi.org/10.1002/ejic.200400298
- M.S. Alam, S. Rabi, M.M. Rahman, A. Baidya, M. Debi and T.G. Roy, J. Chem. Sci., 130, 35 (2018); https://doi.org/10.1007/s12039-018-1438-z
- B. Drahoš, I. Císarová, O. Laguta, V.T. Santana, P. Neugebauer and R. Herchel, Dalton Trans., 49, 4425 (2020); https://doi.org/10.1039/D0DT00166J
- R.K. Shil, S. Rabi, S. Barua, R. Amin, M.A. Manchur and T.G. Roy, J. Incl. Phenom. Macrocycl. Chem., 99, 87 (2021); https://doi.org/10.1007/s10847-020-01031-9
- L. Dey, S. Rabi, D. Palit, S.K.S. Hazari, Z.A. Begum, I.M.M. Rahman and T.G. Roy, J. Mol. Struct., 1240, 130579 (2021); https://doi.org/10.1016/j.molstruc.2021.130579
- T.G. Roy, S.K.S. Hazari, B.K. Dey, H.A. Miah and E.R.T. Tiekink, Acta Crystallogr. E, 57, o524 (2001); https://doi.org/10.1107/S160053680100784X
- P. Paul, S. Rabi, P. Kanungoe, S. Muntaha, D. Palit and T.G. Roy, Acta Sci. Pharm. Sci., 5, 60 (2020); https://doi.org/10.31080/ASPS.2020.05.0652
- M. Bröring, S. Prikhodovski and C.D. Brandt, Inorg. Chim. Acta, 357, 1733 (2004); https://doi.org/10.1016/j.ica.2003.12.021
- J. Ghannam, T. Al Assil, T.C. Pankratz, R.L. Lord, M. Zeller and W.-T. Lee, Inorg. Chem., 57, 8307 (2018); https://doi.org/10.1021/acs.inorgchem.8b00958
- T.G. Roy, S.K.S. Hazari, B.K. Dey, H.A. Miah, F. Olbrich and D. Rehder, Inorg. Chem., 46, 5372 (2007); https://doi.org/10.1021/ic061700t
- T.G. Roy, S.K.S. Hazari, H.A. Miah, S.K.D. Gupta, P.G. Roy, U. Behrens and D. Rehder, Inorg. Chim. Acta, 415, 124 (2014); https://doi.org/10.1016/j.ica.2014.02.041
- N.F. Curtis, D.A. Swann, T.N. Waters and I.E. Maxwell, J. Am. Chem. Soc., 91, 4588 (1969); https://doi.org/10.1021/ja01044a068
- R. Bembi, S.M. Sondhi, A.K. Singh, A.K. Jhanji, T.G. Roy, J.W. Lown and R.G. Ball, Bull. Chem. Soc. Jpn., 62, 3701 (1989); https://doi.org/10.1246/bcsj.62.3701
- T.G. Roy, R. Bembi, S. Hazari, B.K. Dey, T. Acharjee, E. Horn and E. Tiekink, J. Coord. Chem., 55, 853 (2002); https://doi.org/10.1080/0095897022000002187
- A. Chakraborty, S. Rabi, L. Dey, D. Palit, B.K. Dey, E.R.T. Tiekink and T.G. Roy, Heliyon, 8, e09678 (2022); https://doi.org/10.1016/j.heliyon.2022.e09678
- R. Bembi, R. Singh, S. Aftab, T.G. Roy and A.K. Jhanjee, J. Coord. Chem., 14, 119 (2006); https://doi.org/10.1080/00958978508073897
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley: Hoboken, NJ (2007).
- J. Reedijk, P.W.N.M. van Leeuwen and W.L. Groeneveld, Rec. Trav. Chim. Pays-Bas, 87, 129 (1968); https://doi.org/10.1002/recl.19680870203
- S. Barua, S. Rabi, A.K. Datta, E. Debanath, R.K. Shil and T.G. Roy, J. Incl. Phenom. Macrocycl. Chem.., 86, 291 (2016); https://doi.org/10.1007/s10847-016-0667-3
- T.G. Roy, S.K.S. Hazari, B.K. Dey, H.A. Meah, M.S. Rahman, D.I. Kim and Y.C. Park, J. Coord. Chem., 60, 1567 (2007); https://doi.org/10.1080/00958970601086677
- R.T. Conley, Infrared Spectroscopy, Allyn & Bacon, Boston, USA (1972).
- W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
- R.H. Balundgi and A. Chakravorty, Inorg. Nucl. Chem. Lett., 9, 167 (1973); https://doi.org/10.1016/0020-1650(73)80049-2
- R. Bembi, M.G.B. Drew, R. Singh and T.G. Roy, Inorg. Chem., 30, 1403 (1991); https://doi.org/10.1021/ic00006a044
- N.F. Curtis and Y.M. Curtis, Inorg. Chem., 4, 804 (1965); https://doi.org/10.1021/ic50028a007
- E.R. Acuña-Cueva, R. Faure, N.A. Illán-Cabeza, S.B. Jiménez-Pulido, M.N. Moreno-Carretero and M. Quirós-Olozábal, Inorg. Chim. Acta, 342, 209 (2003); https://doi.org/10.1016/S0020-1693(02)01165-9
- M.E. Farago and J.M. James, Inorg. Chem., 4, 1706 (1965); https://doi.org/10.1021/ic50034a007
- T.G. Roy, S.K.S. Hazari, B.K. Dey, R. Sutradhar, L. Dey, N. Anowar and E.R.T. Tiekink, J. Coord. Chem., 59, 351 (2006); https://doi.org/10.1080/00958970500344664
- T.G. Roy, S.K.S. Hazari, B.K. Dey, S. Chakraborti and E.R.T. Tiekink, Met. Based Drugs, 6, 458029 (1999); https://doi.org/10.1155/MBD.1999.345
- A. Sabatini and I. Bertini, Inorg. Chem., 4, 959 (1965); https://doi.org/10.1021/ic50029a007
- M.J. D'Aniello Jr. and E.K. Barefield, J. Am. Chem. Soc., 98, 1610 (1976); https://doi.org/10.1021/ja00422a071
- T.G. Roy, S.K.S. Hazari, B.K. Dey, S. Dutta, M.A. Monchur and E.R.T. Tiekink, J. Coord. Chem., 59, 1757 (2006); https://doi.org/10.1080/00958970500538034
- S. Yasmin, S. Rabi, F.B. Biswas, T.G. Roy, F. Olbrich and D. Rehder, J. Incl. Phenom. Macrocycl. Chem., 87, 239 (2017); https://doi.org/10.1007/s10847-017-0693-9
- M. Salehi and M. Hasanzadeh, Inorg. Chim. Acta, 426, 6 (2015); https://doi.org/10.1016/j.ica.2014.10.023
- N. Dharmaraj, P. Viswanathamurthi and K. Natarajan, Transition Met. Chem., 26, 105 (2001); https://doi.org/10.1023/A:1007132408648
- L.B. Reller, M. Weinstein, J.H. Jorgensen and M.J. Ferraro, Clin. Infect. Dis., 49, 1749 (2009); https://doi.org/10.1086/647952
References
S.G. Shankarwar, B.B. Nagolkar, V.A. Shelke and T.K. Chondhekar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 145, 188 (2015); https://doi.org/10.1016/j.saa.2015.02.006
P. Gull, O.A. Dar, M.A. Malik and A.A. Hashmi, Microb. Pathog., 100, 237 (2016); https://doi.org/10.1016/j.micpath.2016.10.003
S.G. Rzuczek, D.S. Pilch, A. Liu, L. Liu, E.J. LaVoie and J.E. Rice, J. Med. Chem., 53, 3632 (2010); https://doi.org/10.1021/jm1000612
H.A. El-Boraey and O.A. El-Gammal, Spectrochim. Acta A Mol. Biomol. Spectrosc., 138, 553 (2015); https://doi.org/10.1016/j.saa.2014.11.015
T. Chandra, B.J. Kraft, J.C. Huffman and J.M. Zaleski, Inorg. Chem., 42, 5158 (2003); https://doi.org/10.1021/ic030035a
D.P. Singh, K. Kumar, S.S. Dhiman and J. Sharma, J. Enzyme Inhib. Med. Chem., 25, 21 (2010); https://doi.org/10.3109/14756360902932750
A. Majkowska-Pilip and A. Bilewicz, J. Inorg. Biochem., 105, 313 (2011); https://doi.org/10.1016/j.jinorgbio.2010.11.003
R. Schibli and A.P. Schubiger, Eur. J. Nucl. Med. Mol. Imaging, 29, 1529 (2002); https://doi.org/10.1007/s00259-002-0900-8
B.L. Holman, A.G. Jones, J. Lister-James, A. Davison, M.J. Abrams, J.M. Kirshenbaum, S.S. Tumeh and R.J. English, J. Nucl. Med., 25, 1350 (1984).
D. Piwnica-Worms, V.V. Rao, J.F. Kronauge and J.M. Croop, Biochemistry, 34, 12210 (1995); https://doi.org/10.1021/bi00038a015
P. Gull, M.A. Malik, O.A. Dar and A.A. Hashmi, J. Mol. Struct., 1134, 734 (2017); https://doi.org/10.1016/j.molstruc.2017.01.033
V. Sangwan and D.P. Singh, Vietnam J. Chem., 57, 543 (2019); https://doi.org/10.1002/vjch.201900058
H.A. El-Boraey and O.A. El-Gammal, J. Incl. Phenom. Macrocycl. Chem., 90, 123 (2018); https://doi.org/10.1007/s10847-017-0774-9
K.R. Chaudhari, A. Kunwar, N. Bhuvanesh and S. Dey, New J. Chem., 44, 7329 (2020); https://doi.org/10.1039/C9NJ06052A
T.G. Roy, S.K.S. Hazari, B.K. Dey, H.A. Miah, C. Bader and D. Rehder, Eur. J. Inorg. Chem., 2004, 4115 (2004); https://doi.org/10.1002/ejic.200400298
M.S. Alam, S. Rabi, M.M. Rahman, A. Baidya, M. Debi and T.G. Roy, J. Chem. Sci., 130, 35 (2018); https://doi.org/10.1007/s12039-018-1438-z
B. Drahoš, I. Císarová, O. Laguta, V.T. Santana, P. Neugebauer and R. Herchel, Dalton Trans., 49, 4425 (2020); https://doi.org/10.1039/D0DT00166J
R.K. Shil, S. Rabi, S. Barua, R. Amin, M.A. Manchur and T.G. Roy, J. Incl. Phenom. Macrocycl. Chem., 99, 87 (2021); https://doi.org/10.1007/s10847-020-01031-9
L. Dey, S. Rabi, D. Palit, S.K.S. Hazari, Z.A. Begum, I.M.M. Rahman and T.G. Roy, J. Mol. Struct., 1240, 130579 (2021); https://doi.org/10.1016/j.molstruc.2021.130579
T.G. Roy, S.K.S. Hazari, B.K. Dey, H.A. Miah and E.R.T. Tiekink, Acta Crystallogr. E, 57, o524 (2001); https://doi.org/10.1107/S160053680100784X
P. Paul, S. Rabi, P. Kanungoe, S. Muntaha, D. Palit and T.G. Roy, Acta Sci. Pharm. Sci., 5, 60 (2020); https://doi.org/10.31080/ASPS.2020.05.0652
M. Bröring, S. Prikhodovski and C.D. Brandt, Inorg. Chim. Acta, 357, 1733 (2004); https://doi.org/10.1016/j.ica.2003.12.021
J. Ghannam, T. Al Assil, T.C. Pankratz, R.L. Lord, M. Zeller and W.-T. Lee, Inorg. Chem., 57, 8307 (2018); https://doi.org/10.1021/acs.inorgchem.8b00958
T.G. Roy, S.K.S. Hazari, B.K. Dey, H.A. Miah, F. Olbrich and D. Rehder, Inorg. Chem., 46, 5372 (2007); https://doi.org/10.1021/ic061700t
T.G. Roy, S.K.S. Hazari, H.A. Miah, S.K.D. Gupta, P.G. Roy, U. Behrens and D. Rehder, Inorg. Chim. Acta, 415, 124 (2014); https://doi.org/10.1016/j.ica.2014.02.041
N.F. Curtis, D.A. Swann, T.N. Waters and I.E. Maxwell, J. Am. Chem. Soc., 91, 4588 (1969); https://doi.org/10.1021/ja01044a068
R. Bembi, S.M. Sondhi, A.K. Singh, A.K. Jhanji, T.G. Roy, J.W. Lown and R.G. Ball, Bull. Chem. Soc. Jpn., 62, 3701 (1989); https://doi.org/10.1246/bcsj.62.3701
T.G. Roy, R. Bembi, S. Hazari, B.K. Dey, T. Acharjee, E. Horn and E. Tiekink, J. Coord. Chem., 55, 853 (2002); https://doi.org/10.1080/0095897022000002187
A. Chakraborty, S. Rabi, L. Dey, D. Palit, B.K. Dey, E.R.T. Tiekink and T.G. Roy, Heliyon, 8, e09678 (2022); https://doi.org/10.1016/j.heliyon.2022.e09678
R. Bembi, R. Singh, S. Aftab, T.G. Roy and A.K. Jhanjee, J. Coord. Chem., 14, 119 (2006); https://doi.org/10.1080/00958978508073897
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley: Hoboken, NJ (2007).
J. Reedijk, P.W.N.M. van Leeuwen and W.L. Groeneveld, Rec. Trav. Chim. Pays-Bas, 87, 129 (1968); https://doi.org/10.1002/recl.19680870203
S. Barua, S. Rabi, A.K. Datta, E. Debanath, R.K. Shil and T.G. Roy, J. Incl. Phenom. Macrocycl. Chem.., 86, 291 (2016); https://doi.org/10.1007/s10847-016-0667-3
T.G. Roy, S.K.S. Hazari, B.K. Dey, H.A. Meah, M.S. Rahman, D.I. Kim and Y.C. Park, J. Coord. Chem., 60, 1567 (2007); https://doi.org/10.1080/00958970601086677
R.T. Conley, Infrared Spectroscopy, Allyn & Bacon, Boston, USA (1972).
W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
R.H. Balundgi and A. Chakravorty, Inorg. Nucl. Chem. Lett., 9, 167 (1973); https://doi.org/10.1016/0020-1650(73)80049-2
R. Bembi, M.G.B. Drew, R. Singh and T.G. Roy, Inorg. Chem., 30, 1403 (1991); https://doi.org/10.1021/ic00006a044
N.F. Curtis and Y.M. Curtis, Inorg. Chem., 4, 804 (1965); https://doi.org/10.1021/ic50028a007
E.R. Acuña-Cueva, R. Faure, N.A. Illán-Cabeza, S.B. Jiménez-Pulido, M.N. Moreno-Carretero and M. Quirós-Olozábal, Inorg. Chim. Acta, 342, 209 (2003); https://doi.org/10.1016/S0020-1693(02)01165-9
M.E. Farago and J.M. James, Inorg. Chem., 4, 1706 (1965); https://doi.org/10.1021/ic50034a007
T.G. Roy, S.K.S. Hazari, B.K. Dey, R. Sutradhar, L. Dey, N. Anowar and E.R.T. Tiekink, J. Coord. Chem., 59, 351 (2006); https://doi.org/10.1080/00958970500344664
T.G. Roy, S.K.S. Hazari, B.K. Dey, S. Chakraborti and E.R.T. Tiekink, Met. Based Drugs, 6, 458029 (1999); https://doi.org/10.1155/MBD.1999.345
A. Sabatini and I. Bertini, Inorg. Chem., 4, 959 (1965); https://doi.org/10.1021/ic50029a007
M.J. D'Aniello Jr. and E.K. Barefield, J. Am. Chem. Soc., 98, 1610 (1976); https://doi.org/10.1021/ja00422a071
T.G. Roy, S.K.S. Hazari, B.K. Dey, S. Dutta, M.A. Monchur and E.R.T. Tiekink, J. Coord. Chem., 59, 1757 (2006); https://doi.org/10.1080/00958970500538034
S. Yasmin, S. Rabi, F.B. Biswas, T.G. Roy, F. Olbrich and D. Rehder, J. Incl. Phenom. Macrocycl. Chem., 87, 239 (2017); https://doi.org/10.1007/s10847-017-0693-9
M. Salehi and M. Hasanzadeh, Inorg. Chim. Acta, 426, 6 (2015); https://doi.org/10.1016/j.ica.2014.10.023
N. Dharmaraj, P. Viswanathamurthi and K. Natarajan, Transition Met. Chem., 26, 105 (2001); https://doi.org/10.1023/A:1007132408648
L.B. Reller, M. Weinstein, J.H. Jorgensen and M.J. Ferraro, Clin. Infect. Dis., 49, 1749 (2009); https://doi.org/10.1086/647952