Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Protonation of Imino Moiety in Aminoguanidine by Heterolytic O–H Bond Cleavage on Phthalic Acid: Theoretical, Experimental and DNA Binding Studies
Corresponding Author(s) : B.N. Sivasankar
Asian Journal of Chemistry,
Vol. 35 No. 2 (2023): Vol 35 Issue 2, 2023
Abstract
Aqueous neutralization reaction between aminoguanidine hydrogencarbonate and phthalic acid yielded the crystals of aminoguanidine hydrogenphthalate monohydrate (AHPMH). The crystal quality is further improved by repeated recrystallization and single crystals were obtained. The single crystal XRD data reveals that the compound crystallizes in the monoclinic crystal system with the Cc space group. The unit cell consists of four molecules (z = 4) and in the crystal lattice they are linked by O–H···O and N–H···O intermolecular hydrogen bonding. Geometrical and vibrational analyses were performed by B3LYP/6311G(d,p) basis set and compared with the single crystal XRD values. The Mulliken charge and molecular electrostatic potential (MEP) analyses have been used to predict the reaction behaviour and bond cleavage fashion during the reaction. The heterolytic O-H bonding electrons are shifted towards the oxygen atom (-0.6112 e) and it possesses high electronegative which influenced the formation of strong hydrogen bond. The binding constant (Kb) of the AHPMH indicates that strong interactions are developed between the title compound and CT-DNA.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.R.A. Blomberg and P.E.M. Siegbahn, Biochim. Biophys. Acta-Bioenerg., 1757, 969 (2006); https://doi.org/10.1016/j.bbabio.2006.01.002
- H. Ishikita and K. Saito, J. R. Soc. Interface, 11, 20130518 (2014) https://doi.org/10.1098/rsif.2013.0518
- P.H.J. Heller and H.R. Blattmann, Pure Appl. Chem., 36, 141 (1973); https://doi.org/10.1351/pac197336010141
- P. Chou, D. McMorrow, T.J. Aartsma and M. Kasha, J. Phys. Chem., 88, 4596 (1984); https://doi.org/10.1021/j150664a032
- M. Scherl, D. Haarer, J. Fischer, A. DeCian, J.-M. Lehn and Y. Eichen, J. Phys. Chem., 100, 16175 (1996); https://doi.org/10.1021/jp9609242
- I. Fernández, P. Hervés and M. Parajó, J. Phys. Org. Chem., 21, 713 (2008); https://doi.org/10.1002/poc.1380
- P. Hervés, R.G. Button and D.L.H. Williams, J. Chem. Res., 234, 474 (1998); https://doi.org/10.1039/a803199a
- R.G.S. Berlinck and S. Romminger, Nat. Prod. Rep., 33, 456 (2016); https://doi.org/10.1039/C5NP00108K
- Y. Kudo, T. Yasumoto, D. Mebs, Y. Cho, K. Konoki and M. Yotsu-Yamashita, Angew. Chem. Int. Ed., 55, 8728 (2016); https://doi.org/10.1002/anie.201602971
- C.L. Hannon and E.V. Anslyn, Eds.: H. Dugas, Bioorganic Chemistry Frontiers, vol. III, Springer: Verlag (1993).
- S. Patai, The Chemistry of Amidines and Imidates, vol. 1, Wiley: Chichester (1975).
- G. Häfelinger and F.K.H. Kuske, Eds. S. Patai and Z. Rappoport, The Chemistry of Amidines and Imidates, John Wiley & Sons, Ltd.; Chichester, UK, pp. 1-100 (1991).
- E.D. Raczynska, M.K. Cyranski, M. Gutowski, J. Rak, J.-F. Gal, P.-C. Maria, M. Darowska and K. Duczmal, J. Phys. Org. Chem., 16, 91 (2003); https://doi.org/10.1002/poc.578
- M. Brownlee, Diabetes Care, 15, 1835 (1992); https://doi.org/10.2337/diacare.15.12.1835
- T.M. Osicka, Y. Yu, V. Lee, S. Panagiotopoulos, B.E. Kemp and G. Jerums, Clin. Sci., 100, 249 (2001); https://doi.org/10.1042/CS20000194
- K. Karjalainen, R. Pasqualini, J.E. Cortes, S.M. Kornblau, B. Lichtiger, S. O’brien, H.M. Kantarjian, R.L. Sidman, W. Arap and E. Koivunen, Cancer, 120, 589 (2014); https://doi.org/10.1002/cncr.28419
- E.F. Caldin, J. Chem. Soc., 64, 3345 (1959); https://doi.org/10.1039/jr9590003345
- C.D. Ritchie and R.E. Uschold, J. Am. Chem. Soc., 90, 3415 (1968); https://doi.org/10.1021/ja01015a022
- C.F. Bernasconi, Pure Appl. Chem., 54, 2335 (1982); https://doi.org/10.1351/pac198254122335
- D. Peeters, G. Leroy and C. Wilante, J. Mol. Struct., 416, 21 (1997); https://doi.org/10.1016/S0022-2860(97)00047-1
- Bruker, APEX2 and SAINT-Plus, Bruker AXS Inc., Madison (2004).
- A. Altomare, G. Cascarano, C. Giacovazzo and A.J. Guagliardi, J. Appl. Cryst., 26, 343 (1993); https://doi.org/10.1107/S0021889892010331
- C.K. Johnson, ORTEP ORNL–3794, Oak Ridge National Laboratory, Tennessee (1976).
- G.M. Sheldrick, SHELXL–2014 Programs for Crystal Structure Determination, University of Cambridge, England (1977).
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, J.E. Peralta Jr., F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian 16, Revision A.03; Gaussian, Inc., Wallingford CT (2016).
- A.D. Becke, Phys. Rev. A Gen. Phys., 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- A.G. Baboul, L.A. Curtiss, P.C. Redfern and K. Raghavachari, J. Chem. Phys., 110, 7650 (1999); https://doi.org/10.1063/1.478676
- R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecular Orbital Theory, Oxford University Press, New York (1998).
- G. Varsanyi, Assignments of Vibrational Spectra of 700 Benzene Derivatives, Wiley: New York (1974).
- V. Krishnakumar and N. Prabavathi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 72, 743 (2009); https://doi.org/10.1016/j.saa.2008.11.012
- K. Jug and Z.B. Maksic, Theoretical Model of Chemical Bonding, Springer: Berlin (1991).
- S. Fliszar, Charge Distributions and Chemical Effects, Springer, Berlin, Heidelberg: New York (1983).
- S.K. Kurtz and T.T. Perry, J. Appl. Phys., 39, 3798 (1968); https://doi.org/10.1063/1.1656857
- M.A. Spackman and D. Jayatilaka, CrystEngComm, 11, 19 (2009); https://doi.org/10.1039/B818330A
- M.A. Spackman and J.J. McKinnon, CrystEngComm, 4, 378 (2002); https://doi.org/10.1039/B203191B
- A.L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J.J. McKinnon and B. Kahr, Cryst. Growth Des., 8, 4517 (2008); https://doi.org/10.1021/cg8005212
- D. Cremer, Acta Crystallogr. B, 40, 498 (1984); https://doi.org/10.1107/S0108768184002548
- S.R. Naidu, K.V. Prabhakaran, N.M. Bhide and E.M. Kurian, J. Therm. Anal. Calorim., 61, 861 (2000); https://doi.org/10.1023/A:1010113707251
- Ö. Karaca, S.M. Meier-Menches, A. Casini and F.E. Kuhn, Chem. Commun., 53, 8249 (2017); https://doi.org/10.1039/C7CC03074F
- D. He, L. Wang, L. Wang, X. Li and Y. Xu, J. Photochem. Photobiol. B, 166, 333 (2017); https://doi.org/10.1016/j.jphotobiol.2016.12.003
- J.H. Shi, Y.Y. Lou, K.L. Zhou and D.-Q. Pan, J. Biomol. Struct. Dyn., 36, 2738 (2018); https://doi.org/10.1080/07391102.2017.1365012
References
M.R.A. Blomberg and P.E.M. Siegbahn, Biochim. Biophys. Acta-Bioenerg., 1757, 969 (2006); https://doi.org/10.1016/j.bbabio.2006.01.002
H. Ishikita and K. Saito, J. R. Soc. Interface, 11, 20130518 (2014) https://doi.org/10.1098/rsif.2013.0518
P.H.J. Heller and H.R. Blattmann, Pure Appl. Chem., 36, 141 (1973); https://doi.org/10.1351/pac197336010141
P. Chou, D. McMorrow, T.J. Aartsma and M. Kasha, J. Phys. Chem., 88, 4596 (1984); https://doi.org/10.1021/j150664a032
M. Scherl, D. Haarer, J. Fischer, A. DeCian, J.-M. Lehn and Y. Eichen, J. Phys. Chem., 100, 16175 (1996); https://doi.org/10.1021/jp9609242
I. Fernández, P. Hervés and M. Parajó, J. Phys. Org. Chem., 21, 713 (2008); https://doi.org/10.1002/poc.1380
P. Hervés, R.G. Button and D.L.H. Williams, J. Chem. Res., 234, 474 (1998); https://doi.org/10.1039/a803199a
R.G.S. Berlinck and S. Romminger, Nat. Prod. Rep., 33, 456 (2016); https://doi.org/10.1039/C5NP00108K
Y. Kudo, T. Yasumoto, D. Mebs, Y. Cho, K. Konoki and M. Yotsu-Yamashita, Angew. Chem. Int. Ed., 55, 8728 (2016); https://doi.org/10.1002/anie.201602971
C.L. Hannon and E.V. Anslyn, Eds.: H. Dugas, Bioorganic Chemistry Frontiers, vol. III, Springer: Verlag (1993).
S. Patai, The Chemistry of Amidines and Imidates, vol. 1, Wiley: Chichester (1975).
G. Häfelinger and F.K.H. Kuske, Eds. S. Patai and Z. Rappoport, The Chemistry of Amidines and Imidates, John Wiley & Sons, Ltd.; Chichester, UK, pp. 1-100 (1991).
E.D. Raczynska, M.K. Cyranski, M. Gutowski, J. Rak, J.-F. Gal, P.-C. Maria, M. Darowska and K. Duczmal, J. Phys. Org. Chem., 16, 91 (2003); https://doi.org/10.1002/poc.578
M. Brownlee, Diabetes Care, 15, 1835 (1992); https://doi.org/10.2337/diacare.15.12.1835
T.M. Osicka, Y. Yu, V. Lee, S. Panagiotopoulos, B.E. Kemp and G. Jerums, Clin. Sci., 100, 249 (2001); https://doi.org/10.1042/CS20000194
K. Karjalainen, R. Pasqualini, J.E. Cortes, S.M. Kornblau, B. Lichtiger, S. O’brien, H.M. Kantarjian, R.L. Sidman, W. Arap and E. Koivunen, Cancer, 120, 589 (2014); https://doi.org/10.1002/cncr.28419
E.F. Caldin, J. Chem. Soc., 64, 3345 (1959); https://doi.org/10.1039/jr9590003345
C.D. Ritchie and R.E. Uschold, J. Am. Chem. Soc., 90, 3415 (1968); https://doi.org/10.1021/ja01015a022
C.F. Bernasconi, Pure Appl. Chem., 54, 2335 (1982); https://doi.org/10.1351/pac198254122335
D. Peeters, G. Leroy and C. Wilante, J. Mol. Struct., 416, 21 (1997); https://doi.org/10.1016/S0022-2860(97)00047-1
Bruker, APEX2 and SAINT-Plus, Bruker AXS Inc., Madison (2004).
A. Altomare, G. Cascarano, C. Giacovazzo and A.J. Guagliardi, J. Appl. Cryst., 26, 343 (1993); https://doi.org/10.1107/S0021889892010331
C.K. Johnson, ORTEP ORNL–3794, Oak Ridge National Laboratory, Tennessee (1976).
G.M. Sheldrick, SHELXL–2014 Programs for Crystal Structure Determination, University of Cambridge, England (1977).
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, J.E. Peralta Jr., F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian 16, Revision A.03; Gaussian, Inc., Wallingford CT (2016).
A.D. Becke, Phys. Rev. A Gen. Phys., 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
A.G. Baboul, L.A. Curtiss, P.C. Redfern and K. Raghavachari, J. Chem. Phys., 110, 7650 (1999); https://doi.org/10.1063/1.478676
R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecular Orbital Theory, Oxford University Press, New York (1998).
G. Varsanyi, Assignments of Vibrational Spectra of 700 Benzene Derivatives, Wiley: New York (1974).
V. Krishnakumar and N. Prabavathi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 72, 743 (2009); https://doi.org/10.1016/j.saa.2008.11.012
K. Jug and Z.B. Maksic, Theoretical Model of Chemical Bonding, Springer: Berlin (1991).
S. Fliszar, Charge Distributions and Chemical Effects, Springer, Berlin, Heidelberg: New York (1983).
S.K. Kurtz and T.T. Perry, J. Appl. Phys., 39, 3798 (1968); https://doi.org/10.1063/1.1656857
M.A. Spackman and D. Jayatilaka, CrystEngComm, 11, 19 (2009); https://doi.org/10.1039/B818330A
M.A. Spackman and J.J. McKinnon, CrystEngComm, 4, 378 (2002); https://doi.org/10.1039/B203191B
A.L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J.J. McKinnon and B. Kahr, Cryst. Growth Des., 8, 4517 (2008); https://doi.org/10.1021/cg8005212
D. Cremer, Acta Crystallogr. B, 40, 498 (1984); https://doi.org/10.1107/S0108768184002548
S.R. Naidu, K.V. Prabhakaran, N.M. Bhide and E.M. Kurian, J. Therm. Anal. Calorim., 61, 861 (2000); https://doi.org/10.1023/A:1010113707251
Ö. Karaca, S.M. Meier-Menches, A. Casini and F.E. Kuhn, Chem. Commun., 53, 8249 (2017); https://doi.org/10.1039/C7CC03074F
D. He, L. Wang, L. Wang, X. Li and Y. Xu, J. Photochem. Photobiol. B, 166, 333 (2017); https://doi.org/10.1016/j.jphotobiol.2016.12.003
J.H. Shi, Y.Y. Lou, K.L. Zhou and D.-Q. Pan, J. Biomol. Struct. Dyn., 36, 2738 (2018); https://doi.org/10.1080/07391102.2017.1365012