Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Production of Biodiesel in the Presence of Co-Solvents in Transesterification: A Review
Corresponding Author(s) : Udara S.P.R. Arachchige
Asian Journal of Chemistry,
Vol. 35 No. 2 (2023): Vol 35 Issue 2, 2023
Abstract
Consumption of fossil fuels has resulted in several economic and environmental consequences, prompting a quest for renewable energy sources rather than a reliance on fossil fuels. Biodiesel is a renewable source of energy that can be substituted for fossil fuel-based diesel fuel. Transesterification is the most economically viable way of producing biodiesel. However, the biodiesel manufacturing method based on transesterification has a disadvantage due to the immiscibility of the two key reactants, alcohol and oil, which results in a mass transfer resistance and reduces biodiesel yield. Several researchers have investigated using another solvent called a co-solvent to overcome the mass transfer barrier in the reaction medium. The purpose of this review was to examine the influence of several co-solvents on biodiesel synthesis that had been previously investigated the research.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Saleem, W. Jiandong, K. Zaman, E.E. Elashkar and A.M. Shoukry, Transport. Res. Part D, 62, 152 (2018); https://doi.org/10.1016/j.trd.2018.02.016
- A.N. Phan and T.M. Phan, Fuel, 87, 3490 (2008); https://doi.org/10.1016/j.fuel.2008.07.008
- J. Dai, R. Alvarado, S. Ali, Z. Ahmed and M.S. Meo, Environ. Sci. Pollut. Res., (2023); https://doi.org/10.1007/s11356-022-25100-3
- F. Perera, Int. J. Environ. Res. Public Health, 15, 16 (2018); https://doi.org/10.3390/ijerph15010016
- H.K. Jeswani, A. Chilvers and A. Azapagic, Proc. R. Soc. A, 476, 20200351 (2020); https://doi.org/10.1098/rspa.2020.0351
- C.C. Enweremadu and M.M. Mbarawa, Renew. Sustain. Energy Rev., 13, 2205 (2009); https://doi.org/10.1016/j.rser.2009.06.007
- U.S.P.R. Arachchige, K.A.V. Miyuranga, D. Thilakarathne, R.A. Jayasinghe and N.A. Weerasekara, Nat. Environ. Pollut. Technol., 20, 1973 (2021); https://doi.org/10.46488/NEPT.2021.v20i05.013
- M. Berrios, M.A. Martín, A.F. Chica and A.Martín, Chem. Eng. J., 160, 473 (2010); https://doi.org/10.1016/j.cej.2010.03.050
- P. Purwanto, L. Buchori and I. Istadi, Heliyon, 6, e05164 (2020); https://doi.org/10.1016/j.heliyon.2020.e05164
- I.A. Mohammed-Dabo, M.S. Ahmad, A. Hamza, K. Muazu and A. Aliyu, J. Pet. Technol. Altern. Fuels, 3, 42 (2012); https://doi.org/10.5897/JPTAF11.038
- O. S. Stamenkovic, M.L. Lazic, Z.B. Todorovic, V.B. Veljkovic and D.U. Skala, Bioresour. Technol., 98, 2688 (2007); https://doi.org/10.1016/j.biortech.2006.09.024
- S. Mahajan, S.K. Konar and D.G.B. Boocock, J. Am. Oil Chem. Soc., 83, 641 (2006); https://doi.org/10.1007/s11746-006-1251-6
- Y. Alhassan, N. Kumar, I.M. Bugaje, H.S. Pali and P. Kathkar, Energy Convers. Manage., 84, 640 (2014); https://doi.org/10.1016/j.enconman.2014.04.080
- T.S. Julianto and R. Nurlestari, IOP Conf. Ser. Mater. Sci. Eng., 349, 012063 (2018); https://doi.org/10.1088/1757-899X/349/1/012063
- V. Singh, M. Yadav and Y.C. Sharma, Fuel, 203, 360 (2017); https://doi.org/10.1016/j.fuel.2017.04.111
- A.B. Fadhil, E.T.B. Al-tikrity and M.A. Albadree, Fuel, 162, 215 (2015); https://doi.org/10.1016/j.fuel.2015.09.001
- J.M. Encinar, A. Pardal and N. Sánchez, Fuel, 166, 51 (2016); https://doi.org/10.1016/j.fuel.2015.10.110
- P.D. Luu, H.T. Truong, B.V. Luu, L.N. Pham, K. Imamura, N. Takenaka and Y. Maeda, Bioresour. Technol., 173, 309 (2014); https://doi.org/10.1016/j.biortech.2014.09.114
- J.M. Encinar, J.F. González, A.C. Pardal and G. Martínez, Transesteri-fication of Rapeseed Oil with Methanol in the Presence of Various Co-solvents, In: Third International Symposium on Energy from Biomass and Waste, Venice, Italy; 8-11 November (2010).
- R. Peña, R. Romero, S.L. Martínez, M.J. Ramos, A. Martínez and R. Natividad, Ind. Eng. Chem. Res., 48, 1186 (2009); https://doi.org/10.1021/ie8005929
- H.N.T. Le, K. Imamura, M. Furuta, L. Van Boi and Y. Maeda, Green Process. Synth., 7, 170 (2018); https://doi.org/10.1515/gps-2016-0215
- L.N. Pham, B.V. Luu, H.D. Phuoc, H.N.T. Le, H.T. Truong, P.D. Luu, M. Furuta, K. Imamura and Y. Maeda, J. Oleo Sci., 67, 617 (2018); https://doi.org/10.5650/jos.ess17220
- N. Jomtib, C. Prommuak, M. Goto, M. Sasaki and A. Shotipruk, Eng. J., 15, 49 (2011); https://doi.org/10.4186/ej.2011.15.3.49
- P.D. Luu, N. Takenaka, B. Van Luu, L.N. Pham, K. Imamura and Y. Maeda, Energy Procedia, 61, 2822 (2014); https://doi.org/10.1016/j.egypro.2014.12.303
- L. Wu, K. Huang, T. Wei, Z. Lin, Y. Zou and Z. Tong, Fuel, 186, 597 (2016); https://doi.org/10.1016/j.fuel.2016.08.106
- L. Wu, T. Wei, Z. Lin, Y. Zou, Z. Tong and J. Sun, Fuel, 182, 920 (2016); https://doi.org/10.1016/j.fuel.2016.05.065
- N. Chueluecha, A. Kaewchada and A. Jaree, J. Ind. Eng. Chem., 51, 162 (2017); https://doi.org/10.1016/j.jiec.2017.02.028
- S. Parida, D.K. Sahu and P.K. Misra, J. Energy Inst., 90, 556 (2017); https://doi.org/10.1016/j.joei.2016.05.006
- W. Roschat, T. Siritanon, T. Kaewpuang, B. Yoosuk and V. Promarak, Bioresour. Technol., 209, 343 (2016); https://doi.org/10.1016/j.biortech.2016.03.038
- Q. Guan, H. Shang, J. Liu, J. Gu, B. Li, R. Miao, Q. Chen and P. Ning, Appl. Energy, 164, 380 (2016); https://doi.org/10.1016/j.apenergy.2015.11.029
- Y. Zhang, Y. Li, X. Zhang and T. Tan, Bioresour. Technol., 196, 712 (2015); https://doi.org/10.1016/j.biortech.2015.07.052
- Dianursanti, P. Religia and A. Wijanarko, Procedia Environ. Sci., 23, 412 (2015); https://doi.org/10.1016/j.proenv.2015.01.059
- O.K. Choi, J.S. Song, D.K. Cha and J.W. Lee, Bioresour. Technol., 166, 51 (2014); https://doi.org/10.1016/j.biortech.2014.05.001
- M.K. Lam and K.T. Lee, Fuel Process. Technol., 110, 242 (2013); https://doi.org/10.1016/j.fuproc.2012.12.021
- L.T. Thanh, K. Okitsu, Y. Sadanaga, N. Takenaka, Y. Maeda and H. Bandow, Fuel, 103, 742 (2013); https://doi.org/10.1016/j.fuel.2012.09.029
- G. Guan, N. Sakurai and K. Kusakabe, Chem. Eng. J., 146, 302 (2009); https://doi.org/10.1016/j.cej.2008.10.009
- S. Lim and K. Lee, Chem. Eng. J., 221, 436 (2013); https://doi.org/10.1016/j.cej.2013.02.014
- G.R. Kumar, R. Ravi and A. Chadha, Energy Fuels, 25, 2826 (2011); https://doi.org/10.1021/ef200469u
- W. Cao, H. Han and J. Zhang, Fuel, 84, 347 (2005); https://doi.org/10.1016/j.fuel.2004.10.001
- T. Muppaneni, H.K. Reddy, P.D. Patil, P. Dailey, C. Aday and S. Deng, Appl. Energy, 94, 84 (2012); https://doi.org/10.1016/j.apenergy.2012.01.023
- I. Ambat, V. Srivastava, S. Iftekhar, E. Haapaniemi and M. Sillanpaa, Renew. Energy, 146, 2158 (2020); https://doi.org/10.1016/j.renene.2019.08.061
- H.N.T. Le, K. Imamura, N. Watanabe, M. Furuta, N. Takenaka, L.V. Boi and Y. Maeda, Chem. Eng. Technol., 41, 1013 (2018); https://doi.org/10.1002/ceat.201700575
- B. Fu and P.T. Vasudevan, Energy Fuels, 24, 4646 (2010); https://doi.org/10.1021/ef901176h
- S. Sahani, S. Banerjee and Y.C. Sharma, J. Taiwan Inst. Chem. Eng., 86, 42 (2018); https://doi.org/10.1016/j.jtice.2018.01.029
- N. Chumuang and V. Punsuvon, J. Chem., 2017, 1 (2017); https://doi.org/10.1155/2017/4190818
- S. Sakthivel, S. Halder and P.D. Gupta, Int. J. Green Energy, 10, 876 (2013); https://doi.org/10.1080/15435075.2012.727365
- M.E. Bambase Jr., R.A.R. Almazan, R.B. Demafelis, M.J. Sobremisana and L.S.H. Dizon, Renew. Energy, 163, 571 (2021); https://doi.org/10.1016/j.renene.2020.08.115
- M. Hájek, A. Vávra, P. Mach and A. Straková, J. Environ. Manage., 262, 110295 (2020); https://doi.org/10.1016/j.jenvman.2020.110295
- Z.B. Todorovic, D.Z. Troter, D.R. Ðokic-Stojanovic, A.V. Velièkovic, J.M. Avramovic, O.S. Stamenkovic, L.M. Veselinovic and V.B. Veljkovic, Fuel, 237, 903 (2019); https://doi.org/10.1016/j.fuel.2018.10.056
- I.B. Laskar, T. Deshmukhya, P. Bhanja, B. Paul, R. Gupta and S. Chatterjee, Renew. Energy, 162, 98 (2020); https://doi.org/10.1016/j.renene.2020.08.011
- J. Jiang and C. Tan, J. Taiwan Inst. Chem. Eng., 43, 102 (2012); https://doi.org/10.1016/j.jtice.2011.07.004
- Z.B. Todorovic, O.S. Stamenkovic, I.S. Stamenkovic, J.M. Avramovic, A.V. Velièkovic, I.B. Bankovic-Ilic and V.B. Veljkovic, Fuel, 107, 493 (2013); https://doi.org/10.1016/j.fuel.2012.11.049
- F. Ataya, M.A. Dube and M. Ternan, Ind. Eng. Chem. Res., 45, 5411 (2006); https://doi.org/10.1021/ie060152o
- A.B. Fadhil and H.M. Mohammed, Transport, 33, 686 (2018); https://doi.org/10.3846/16484142.2018.1457568
- M. Hsiao, Y. Chang and L. Chang, Appl. Mech. Mater., 209–211, 1136 (2012); https://doi.org/10.4028/www.scientific.net/AMM.209-211.1136
- E.A. Ehimen, Z. Sun and G.C. Carrington, Procedia Environ. Sci., 15, 47 (2012); https://doi.org/10.1016/j.proenv.2012.05.009
- R. Sawangkeaw, K. Bunyakiat and S. Ngamprasertsith, Green Chem., 9, 679 (2007); https://doi.org/10.1039/b614064e
- F. Felicia, Fransiska and Taslim, Biodiesel Production from Chicken Fat Using Diethyl Ether as Co-Solvent, Proceedings of The 5th Sriwijaya International Seminar on Energy and Environmental Science & Technology, pp. 38-42 (2014).
- M.H. Gargari and S.M. Sadrameli, Renew. Energy, 139, 426 (2019); https://doi.org/10.1016/j.renene.2019.02.086
- H. Han, W. Cao and J. Zhang, Process Biochem., 40, 3148 (2005); https://doi.org/10.1016/j.procbio.2005.03.014
- M.K. Lam and K.T. Lee, Fuel, 89, 3866 (2010); https://doi.org/10.1016/j.fuel.2010.07.005
- K.T. Tan, K.T. Lee and A.R. Mohamed, J. Supercrit. Fluids, 53, 88 (2010); https://doi.org/10.1016/j.supflu.2010.01.012
- C.M. Trentin, A.P. Lima, I.P. Alkimim, C. da Silva, F. de Castilhos, M.A. Mazutti and J.V. Oliveira, Fuel Process. Technol., 92, 952 (2011); https://doi.org/10.1016/j.fuproc.2010.12.016
- J. Yin, M. Xiao and J. Song, Energy Convers. Manage., 49, 908 (2008); https://doi.org/10.1016/j.enconman.2007.10.018
- H. Abedini Najafabadi, M. Vossoughi and G. Pazuki, Bioresour. Technol., 193, 90 (2015); https://doi.org/10.1016/j.biortech.2015.06.045
- N. Mahangani, E. Vunain, R. Meijboom and K. Jalama, Biodiesel Production over ZnO/TiO2 Catalyst: Effect of Co-solvent, Temperature and Reaction Time, World Congress on Engineering, vol. II, pp. 1-5 (2015).
- A.B. Fadhil, A.W. Nayyef and N.M.T. Al-layla, Energy Sources A, 42, 1891 (2020); https://doi.org/10.1080/15567036.2019.1604902
- A.B. Fadhil, I.K. Saeed, L.I. Saeed and M.H. Altamer, Energy Sources A, 38, 2883 (2016); https://doi.org/10.1080/15567036.2015.1065299
- L.I. Saeed, A.M. Khalaf and A.B. Fadhil, Asia-Pac. J. Chem. Eng., 16, (2021); https://doi.org/10.1002/apj.2647
- M. Kirubakaran and V.A.M. Selvan, Environ. Qual. Manage., 31, 51 (2020); https://doi.org/10.1002/tqem.21718
- D. Djokic-Stojanovic, Z. Todorovic, D. Troter, O. Stamenkovic, M. Zdujic, L. Veselinovic, D. Manojlovic and V. Veljkovic, Chem. Ind., 73, 351 (2019); https://doi.org/10.2298/HEMIND190822033D
- M. Rahimi, F. Mohammadi, M. Basiri, M.A. Parsamoghadam and M.M. Masahi, J. Taiwan Inst. Chem. Eng., 64, 203 (2016); https://doi.org/10.1016/j.jtice.2016.04.023
- C. Jinsii, W. Xiangyang, H. Enzhu, X. Yufu, H. Xianguo, P. Lijun and J. Shaotong, Int. Conf. Mater. Renew. Energy Environ., 288 (2011); https://doi.org/10.1109/ICMREE.2011.5930815
- N. Akkarawatkhoosith, A. Kaewchada and A. Jaree, Biofuels Biomass, 33, 5322 (2019); https://doi.org/10.1021/acs.energyfuels.9b00641
- E.C. Escobar, R.B. Demafelis, L.J. Pham, L.M. Florece and M.G. Borines, Philipp. J. Crop Sci., 33, 1 (2008).
- C.O. Ayegba, B.O. Aderemi and I.A. Mohammed-Dabo, Biofuels, 7, 245 (2016); https://doi.org/10.1080/17597269.2015.1132367
- M. Taherkhani and S.M. Sadrameli, Renew. Energy, 119, 787 (2018); https://doi.org/10.1016/j.renene.2017.10.061
- M. Hashemzadeh Gargari and S.M. Sadrameli, Energy, 148, 888 (2018); https://doi.org/10.1016/j.energy.2018.01.105
- D. Djokic-Stojanovic, Z.B. Todorovic, D.Z. Troter, O.S. Stamenkovic, L.M. Veselinovic, M.V. Zdujic, D.D. Manojlovic and V.B. Veljkovic, J. Serb. Chem. Soc., 84, 253 (2019); https://doi.org/10.2298/JSC180827007D
- C. Bertoldi, C. da Silva, J.P. Bernardon, M.L. Corazza, L.C. Filho, J.V. Oliveira and F.C. Corazza, Energy Fuels, 23, 5165 (2009); https://doi.org/10.1021/ef900402r
- J.M. Encinar, A. Pardal and G. Martínez, Fuel Process. Technol., 94, 40 (2012); https://doi.org/10.1016/j.fuproc.2011.10.018
- M.F. Elkady, A. Zaatout and O. Balbaa, J. Chem., 2015, 630168 (2015); https://doi.org/10.1155/2015/630168
- W. Liu, F. Duan and Y. Bi, RSC Adv., 8, 13048 (2018); https://doi.org/10.1039/C8RA00982A
- K.A.V. Miyuranga, B.M.C.M. Balasuriya and D. Thilakarathne, Int. J. Scient. Eng. Sci., 6, 52 (2022)
References
H. Saleem, W. Jiandong, K. Zaman, E.E. Elashkar and A.M. Shoukry, Transport. Res. Part D, 62, 152 (2018); https://doi.org/10.1016/j.trd.2018.02.016
A.N. Phan and T.M. Phan, Fuel, 87, 3490 (2008); https://doi.org/10.1016/j.fuel.2008.07.008
J. Dai, R. Alvarado, S. Ali, Z. Ahmed and M.S. Meo, Environ. Sci. Pollut. Res., (2023); https://doi.org/10.1007/s11356-022-25100-3
F. Perera, Int. J. Environ. Res. Public Health, 15, 16 (2018); https://doi.org/10.3390/ijerph15010016
H.K. Jeswani, A. Chilvers and A. Azapagic, Proc. R. Soc. A, 476, 20200351 (2020); https://doi.org/10.1098/rspa.2020.0351
C.C. Enweremadu and M.M. Mbarawa, Renew. Sustain. Energy Rev., 13, 2205 (2009); https://doi.org/10.1016/j.rser.2009.06.007
U.S.P.R. Arachchige, K.A.V. Miyuranga, D. Thilakarathne, R.A. Jayasinghe and N.A. Weerasekara, Nat. Environ. Pollut. Technol., 20, 1973 (2021); https://doi.org/10.46488/NEPT.2021.v20i05.013
M. Berrios, M.A. Martín, A.F. Chica and A.Martín, Chem. Eng. J., 160, 473 (2010); https://doi.org/10.1016/j.cej.2010.03.050
P. Purwanto, L. Buchori and I. Istadi, Heliyon, 6, e05164 (2020); https://doi.org/10.1016/j.heliyon.2020.e05164
I.A. Mohammed-Dabo, M.S. Ahmad, A. Hamza, K. Muazu and A. Aliyu, J. Pet. Technol. Altern. Fuels, 3, 42 (2012); https://doi.org/10.5897/JPTAF11.038
O. S. Stamenkovic, M.L. Lazic, Z.B. Todorovic, V.B. Veljkovic and D.U. Skala, Bioresour. Technol., 98, 2688 (2007); https://doi.org/10.1016/j.biortech.2006.09.024
S. Mahajan, S.K. Konar and D.G.B. Boocock, J. Am. Oil Chem. Soc., 83, 641 (2006); https://doi.org/10.1007/s11746-006-1251-6
Y. Alhassan, N. Kumar, I.M. Bugaje, H.S. Pali and P. Kathkar, Energy Convers. Manage., 84, 640 (2014); https://doi.org/10.1016/j.enconman.2014.04.080
T.S. Julianto and R. Nurlestari, IOP Conf. Ser. Mater. Sci. Eng., 349, 012063 (2018); https://doi.org/10.1088/1757-899X/349/1/012063
V. Singh, M. Yadav and Y.C. Sharma, Fuel, 203, 360 (2017); https://doi.org/10.1016/j.fuel.2017.04.111
A.B. Fadhil, E.T.B. Al-tikrity and M.A. Albadree, Fuel, 162, 215 (2015); https://doi.org/10.1016/j.fuel.2015.09.001
J.M. Encinar, A. Pardal and N. Sánchez, Fuel, 166, 51 (2016); https://doi.org/10.1016/j.fuel.2015.10.110
P.D. Luu, H.T. Truong, B.V. Luu, L.N. Pham, K. Imamura, N. Takenaka and Y. Maeda, Bioresour. Technol., 173, 309 (2014); https://doi.org/10.1016/j.biortech.2014.09.114
J.M. Encinar, J.F. González, A.C. Pardal and G. Martínez, Transesteri-fication of Rapeseed Oil with Methanol in the Presence of Various Co-solvents, In: Third International Symposium on Energy from Biomass and Waste, Venice, Italy; 8-11 November (2010).
R. Peña, R. Romero, S.L. Martínez, M.J. Ramos, A. Martínez and R. Natividad, Ind. Eng. Chem. Res., 48, 1186 (2009); https://doi.org/10.1021/ie8005929
H.N.T. Le, K. Imamura, M. Furuta, L. Van Boi and Y. Maeda, Green Process. Synth., 7, 170 (2018); https://doi.org/10.1515/gps-2016-0215
L.N. Pham, B.V. Luu, H.D. Phuoc, H.N.T. Le, H.T. Truong, P.D. Luu, M. Furuta, K. Imamura and Y. Maeda, J. Oleo Sci., 67, 617 (2018); https://doi.org/10.5650/jos.ess17220
N. Jomtib, C. Prommuak, M. Goto, M. Sasaki and A. Shotipruk, Eng. J., 15, 49 (2011); https://doi.org/10.4186/ej.2011.15.3.49
P.D. Luu, N. Takenaka, B. Van Luu, L.N. Pham, K. Imamura and Y. Maeda, Energy Procedia, 61, 2822 (2014); https://doi.org/10.1016/j.egypro.2014.12.303
L. Wu, K. Huang, T. Wei, Z. Lin, Y. Zou and Z. Tong, Fuel, 186, 597 (2016); https://doi.org/10.1016/j.fuel.2016.08.106
L. Wu, T. Wei, Z. Lin, Y. Zou, Z. Tong and J. Sun, Fuel, 182, 920 (2016); https://doi.org/10.1016/j.fuel.2016.05.065
N. Chueluecha, A. Kaewchada and A. Jaree, J. Ind. Eng. Chem., 51, 162 (2017); https://doi.org/10.1016/j.jiec.2017.02.028
S. Parida, D.K. Sahu and P.K. Misra, J. Energy Inst., 90, 556 (2017); https://doi.org/10.1016/j.joei.2016.05.006
W. Roschat, T. Siritanon, T. Kaewpuang, B. Yoosuk and V. Promarak, Bioresour. Technol., 209, 343 (2016); https://doi.org/10.1016/j.biortech.2016.03.038
Q. Guan, H. Shang, J. Liu, J. Gu, B. Li, R. Miao, Q. Chen and P. Ning, Appl. Energy, 164, 380 (2016); https://doi.org/10.1016/j.apenergy.2015.11.029
Y. Zhang, Y. Li, X. Zhang and T. Tan, Bioresour. Technol., 196, 712 (2015); https://doi.org/10.1016/j.biortech.2015.07.052
Dianursanti, P. Religia and A. Wijanarko, Procedia Environ. Sci., 23, 412 (2015); https://doi.org/10.1016/j.proenv.2015.01.059
O.K. Choi, J.S. Song, D.K. Cha and J.W. Lee, Bioresour. Technol., 166, 51 (2014); https://doi.org/10.1016/j.biortech.2014.05.001
M.K. Lam and K.T. Lee, Fuel Process. Technol., 110, 242 (2013); https://doi.org/10.1016/j.fuproc.2012.12.021
L.T. Thanh, K. Okitsu, Y. Sadanaga, N. Takenaka, Y. Maeda and H. Bandow, Fuel, 103, 742 (2013); https://doi.org/10.1016/j.fuel.2012.09.029
G. Guan, N. Sakurai and K. Kusakabe, Chem. Eng. J., 146, 302 (2009); https://doi.org/10.1016/j.cej.2008.10.009
S. Lim and K. Lee, Chem. Eng. J., 221, 436 (2013); https://doi.org/10.1016/j.cej.2013.02.014
G.R. Kumar, R. Ravi and A. Chadha, Energy Fuels, 25, 2826 (2011); https://doi.org/10.1021/ef200469u
W. Cao, H. Han and J. Zhang, Fuel, 84, 347 (2005); https://doi.org/10.1016/j.fuel.2004.10.001
T. Muppaneni, H.K. Reddy, P.D. Patil, P. Dailey, C. Aday and S. Deng, Appl. Energy, 94, 84 (2012); https://doi.org/10.1016/j.apenergy.2012.01.023
I. Ambat, V. Srivastava, S. Iftekhar, E. Haapaniemi and M. Sillanpaa, Renew. Energy, 146, 2158 (2020); https://doi.org/10.1016/j.renene.2019.08.061
H.N.T. Le, K. Imamura, N. Watanabe, M. Furuta, N. Takenaka, L.V. Boi and Y. Maeda, Chem. Eng. Technol., 41, 1013 (2018); https://doi.org/10.1002/ceat.201700575
B. Fu and P.T. Vasudevan, Energy Fuels, 24, 4646 (2010); https://doi.org/10.1021/ef901176h
S. Sahani, S. Banerjee and Y.C. Sharma, J. Taiwan Inst. Chem. Eng., 86, 42 (2018); https://doi.org/10.1016/j.jtice.2018.01.029
N. Chumuang and V. Punsuvon, J. Chem., 2017, 1 (2017); https://doi.org/10.1155/2017/4190818
S. Sakthivel, S. Halder and P.D. Gupta, Int. J. Green Energy, 10, 876 (2013); https://doi.org/10.1080/15435075.2012.727365
M.E. Bambase Jr., R.A.R. Almazan, R.B. Demafelis, M.J. Sobremisana and L.S.H. Dizon, Renew. Energy, 163, 571 (2021); https://doi.org/10.1016/j.renene.2020.08.115
M. Hájek, A. Vávra, P. Mach and A. Straková, J. Environ. Manage., 262, 110295 (2020); https://doi.org/10.1016/j.jenvman.2020.110295
Z.B. Todorovic, D.Z. Troter, D.R. Ðokic-Stojanovic, A.V. Velièkovic, J.M. Avramovic, O.S. Stamenkovic, L.M. Veselinovic and V.B. Veljkovic, Fuel, 237, 903 (2019); https://doi.org/10.1016/j.fuel.2018.10.056
I.B. Laskar, T. Deshmukhya, P. Bhanja, B. Paul, R. Gupta and S. Chatterjee, Renew. Energy, 162, 98 (2020); https://doi.org/10.1016/j.renene.2020.08.011
J. Jiang and C. Tan, J. Taiwan Inst. Chem. Eng., 43, 102 (2012); https://doi.org/10.1016/j.jtice.2011.07.004
Z.B. Todorovic, O.S. Stamenkovic, I.S. Stamenkovic, J.M. Avramovic, A.V. Velièkovic, I.B. Bankovic-Ilic and V.B. Veljkovic, Fuel, 107, 493 (2013); https://doi.org/10.1016/j.fuel.2012.11.049
F. Ataya, M.A. Dube and M. Ternan, Ind. Eng. Chem. Res., 45, 5411 (2006); https://doi.org/10.1021/ie060152o
A.B. Fadhil and H.M. Mohammed, Transport, 33, 686 (2018); https://doi.org/10.3846/16484142.2018.1457568
M. Hsiao, Y. Chang and L. Chang, Appl. Mech. Mater., 209–211, 1136 (2012); https://doi.org/10.4028/www.scientific.net/AMM.209-211.1136
E.A. Ehimen, Z. Sun and G.C. Carrington, Procedia Environ. Sci., 15, 47 (2012); https://doi.org/10.1016/j.proenv.2012.05.009
R. Sawangkeaw, K. Bunyakiat and S. Ngamprasertsith, Green Chem., 9, 679 (2007); https://doi.org/10.1039/b614064e
F. Felicia, Fransiska and Taslim, Biodiesel Production from Chicken Fat Using Diethyl Ether as Co-Solvent, Proceedings of The 5th Sriwijaya International Seminar on Energy and Environmental Science & Technology, pp. 38-42 (2014).
M.H. Gargari and S.M. Sadrameli, Renew. Energy, 139, 426 (2019); https://doi.org/10.1016/j.renene.2019.02.086
H. Han, W. Cao and J. Zhang, Process Biochem., 40, 3148 (2005); https://doi.org/10.1016/j.procbio.2005.03.014
M.K. Lam and K.T. Lee, Fuel, 89, 3866 (2010); https://doi.org/10.1016/j.fuel.2010.07.005
K.T. Tan, K.T. Lee and A.R. Mohamed, J. Supercrit. Fluids, 53, 88 (2010); https://doi.org/10.1016/j.supflu.2010.01.012
C.M. Trentin, A.P. Lima, I.P. Alkimim, C. da Silva, F. de Castilhos, M.A. Mazutti and J.V. Oliveira, Fuel Process. Technol., 92, 952 (2011); https://doi.org/10.1016/j.fuproc.2010.12.016
J. Yin, M. Xiao and J. Song, Energy Convers. Manage., 49, 908 (2008); https://doi.org/10.1016/j.enconman.2007.10.018
H. Abedini Najafabadi, M. Vossoughi and G. Pazuki, Bioresour. Technol., 193, 90 (2015); https://doi.org/10.1016/j.biortech.2015.06.045
N. Mahangani, E. Vunain, R. Meijboom and K. Jalama, Biodiesel Production over ZnO/TiO2 Catalyst: Effect of Co-solvent, Temperature and Reaction Time, World Congress on Engineering, vol. II, pp. 1-5 (2015).
A.B. Fadhil, A.W. Nayyef and N.M.T. Al-layla, Energy Sources A, 42, 1891 (2020); https://doi.org/10.1080/15567036.2019.1604902
A.B. Fadhil, I.K. Saeed, L.I. Saeed and M.H. Altamer, Energy Sources A, 38, 2883 (2016); https://doi.org/10.1080/15567036.2015.1065299
L.I. Saeed, A.M. Khalaf and A.B. Fadhil, Asia-Pac. J. Chem. Eng., 16, (2021); https://doi.org/10.1002/apj.2647
M. Kirubakaran and V.A.M. Selvan, Environ. Qual. Manage., 31, 51 (2020); https://doi.org/10.1002/tqem.21718
D. Djokic-Stojanovic, Z. Todorovic, D. Troter, O. Stamenkovic, M. Zdujic, L. Veselinovic, D. Manojlovic and V. Veljkovic, Chem. Ind., 73, 351 (2019); https://doi.org/10.2298/HEMIND190822033D
M. Rahimi, F. Mohammadi, M. Basiri, M.A. Parsamoghadam and M.M. Masahi, J. Taiwan Inst. Chem. Eng., 64, 203 (2016); https://doi.org/10.1016/j.jtice.2016.04.023
C. Jinsii, W. Xiangyang, H. Enzhu, X. Yufu, H. Xianguo, P. Lijun and J. Shaotong, Int. Conf. Mater. Renew. Energy Environ., 288 (2011); https://doi.org/10.1109/ICMREE.2011.5930815
N. Akkarawatkhoosith, A. Kaewchada and A. Jaree, Biofuels Biomass, 33, 5322 (2019); https://doi.org/10.1021/acs.energyfuels.9b00641
E.C. Escobar, R.B. Demafelis, L.J. Pham, L.M. Florece and M.G. Borines, Philipp. J. Crop Sci., 33, 1 (2008).
C.O. Ayegba, B.O. Aderemi and I.A. Mohammed-Dabo, Biofuels, 7, 245 (2016); https://doi.org/10.1080/17597269.2015.1132367
M. Taherkhani and S.M. Sadrameli, Renew. Energy, 119, 787 (2018); https://doi.org/10.1016/j.renene.2017.10.061
M. Hashemzadeh Gargari and S.M. Sadrameli, Energy, 148, 888 (2018); https://doi.org/10.1016/j.energy.2018.01.105
D. Djokic-Stojanovic, Z.B. Todorovic, D.Z. Troter, O.S. Stamenkovic, L.M. Veselinovic, M.V. Zdujic, D.D. Manojlovic and V.B. Veljkovic, J. Serb. Chem. Soc., 84, 253 (2019); https://doi.org/10.2298/JSC180827007D
C. Bertoldi, C. da Silva, J.P. Bernardon, M.L. Corazza, L.C. Filho, J.V. Oliveira and F.C. Corazza, Energy Fuels, 23, 5165 (2009); https://doi.org/10.1021/ef900402r
J.M. Encinar, A. Pardal and G. Martínez, Fuel Process. Technol., 94, 40 (2012); https://doi.org/10.1016/j.fuproc.2011.10.018
M.F. Elkady, A. Zaatout and O. Balbaa, J. Chem., 2015, 630168 (2015); https://doi.org/10.1155/2015/630168
W. Liu, F. Duan and Y. Bi, RSC Adv., 8, 13048 (2018); https://doi.org/10.1039/C8RA00982A
K.A.V. Miyuranga, B.M.C.M. Balasuriya and D. Thilakarathne, Int. J. Scient. Eng. Sci., 6, 52 (2022)