Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Zr-Nanofiller on Structural and Thermal Properties of PVDF-co-HFP Porous Polymer Electrolyte Membranes Doped with Mg2+ Ions
Corresponding Author(s) : M. Venkatapathy
Asian Journal of Chemistry,
Vol. 35 No. 1 (2023): Vol 35 Issue 1
Abstract
New poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP)/ZrO2-based nanocomposite porous polymer membranes were prepared with doping of magnesium ions using THF as solvent. These membranes were prepared using the solvent casting technique. The optimal nanofiller (0, 2, 4, 6, 8 and 10% Zr nanopowder) was incorporated into the PVDF-co-HFP/MgTf3/ZrO2 and the incorporation of the nanofiller results in an increase in the porosity of the prepared membranes. The structural, morphological and thermal properties of the nanocomposite porous polymer membranes were also investigated. The structural investigation and the identification of functional groups were accomplished using FTIR technique. X-ray diffraction (XRD) analysis was performed to ascertain the phase of polymer membranes and the phase change that happens upon interaction with nanofiller and Mg2+ ions. Assessment of the nanocomposite porous polymer membrane's morphology and porous structure was performed using a scanning electron microscope (SEM). DSC analysis was used to evaluate the thermal behaviour of the nanocomposite porous membranes. The electrical and dielectric studies confirmed the structural reformation of the polymer electrolyte materials. It was found that 8% nanofiller is the best conducting composition for maximum ionic conductivity, dielectric constant and Mg2+ ion mobility. The incorporation of ZrO2 nanofiller predominantly increases the number of free ions and mobility of the charge carriers in the composite polymer electrolyte systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.B. Goodenough and K.-S. Park, J. Am. Chem. Soc., 135, 1167 (2013); https://doi.org/10.1021/ja3091438
- S. Dühnen, J. Betz, M. Kolek, R. Schmuch, M. Winter and T. Placke, Small Methods, 4, 2000039 (2020); https://doi.org/10.1002/smtd.202000039
- L. Zhang, X. Li, M. Yang and W. Chen, Energy Storage Mater., 41, 522 (2021); https://doi.org/10.1016/j.ensm.2021.06.033
- N. Mittal, A. Ojanguren, N. Cavasin, E. Lizundia and M. Niederberger, Adv. Funct. Mater., 31, 2101827 (2021); https://doi.org/10.1002/adfm.202101827
- G. Foran, D. Mankovsky, N. Verdier, D. Lepage, A. Prébé, D. AyméPerrot and Mickaël Dollé, iScience, 23, 101597 (2020); https://doi.org/10.1016/j.isci.2020.101597
- I. Osada, H. de Vries, B. Scrosati and S. Passerini, Angew. Chem. Int. Ed., 55, 500 (2016); https://doi.org/10.1002/anie.201504971
- K.S. Ngai, S. Ramesh, K. Ramesh and J.C. Juan, Ionics, 22, 1259 (2016); https://doi.org/10.1007/s11581-016-1756-4
- V.S. Voet, G. ten Brinke and K. Loos, J. Polym. Sci. A Polym. Chem., 52, 2861 (2014); https://doi.org/10.1002/pola.27340
- Z. Qiu, X. Liu, J.W. Lam and B.Z. Tang, Macromol. Rapid Commun., 40, 1800568 (2019); https://doi.org/10.1002/marc.201800568
- Y. Xia, X. Wang, X. Xia, R. Xu, S. Zhang, J. Wu, Y. Liang, C. Gu and J. Tu, Chem. Eur. J., 23, 15203 (2017); https://doi.org/10.1002/chem.201703464
- J. Shi, Y. Yang and H. Shao, J. Membr. Sci., 547, 1 (2018); https://doi.org/10.1016/j.memsci.2017.10.033
- R. Prasanth, N. Shubha, H.H. Hng and M. Srinivasan, Eur. Polym. J., 49, 307 (2013); https://doi.org/10.1016/j.eurpolymj.2012.10.033
- M.F. Bósquez-Cáceres, S. Hidalgo-Bonilla, V. Morera Córdova, R.M. Michell and J.P. Tafur, Polymers, 13, 4284 (2021); https://doi.org/10.3390/polym13244284
- J. Hu, W. Wang, B. Zhou, Y. Feng, X. Xie and Z. Xue, J. Membr. Sci., 575, 200 (2019); https://doi.org/10.1016/j.memsci.2019.01.025
- A. Das, N.T. Balakrishnan, N.S. Jishnu, J.D. Joyner, J.H. Ahn, F.M. Jabeen and P. Raghavan, Eds.: P. Raghavan and M.J. Jabeen Fatima, In Polymer Electrolytes for Energy Storage Devices, CRC Press, pp. 133- 148 (2021).
- K. Mishra, T. Arif, R. Kumar and D. Kumar, J. Solid State Electrochem., 23, 2401 (2019); https://doi.org/10.1007/s10008-019-04348-9
- I.K. Sani, S.P. Geshlaghi, S. Pirsa and A. Asdagh, Food Hydrocoll., 117, 106719 (2021); https://doi.org/10.1016/j.foodhyd.2021.106719
- W. Zheng, L. Ren, X. Zhao, C. Wang, L. Yang and R. Liao, Molecules, 27, 4289 (2022); https://doi.org/10.3390/molecules27134289
- P. Sharma, D.K. Kanchan and N. Gondaliya, Open J. Org. Polym. Mater., 2, 38 (2012); https://doi.org/10.4236/ojopm.2012.22006
- P. Dhatarwal and R. J. Sengwa, SN Appl. Sci., 2, 833 (2020); https://doi.org/10.1007/s42452-020-2656-9
- S. Karthikeyan, S. Sikkanthar, S. Selvasekarapandian, D. Arunkumar, H. Nithya and J. Kawamura, J. Polym. Res., 23, 51 (2016); https://doi.org/10.1007/s10965-016-0952-2
- P. Shanmugaraj, A. Swaminathan, R.K. Ravi, M. Dasaiah, P. Senthil Kumar and A. Sakunthala, J. Mater. Sci. Mater. Electron., 30, 20079 (2019); https://doi.org/10.1007/s10854-019-02380-z
- K. Kiran Kumar, M. Ravi, Y. Pavani, S. Bhavani, A.K. Sharma and V.V.R. Narasimha Rao, J. Non-Cryst. Solids, 358, 3205 (2012); https://doi.org/10.1016/j.jnoncrysol.2012.08.022
- D.K. Pradhan, R.N.P. Choudhary and B.K. Samantaray, Int. J. Electrochem. Sci., 3, 597 (2008).
- A. Arya and A.L. Sharma, Ionics, 25, 1617 (2019); https://doi.org/10.1007/s11581-019-02916-7
- R. Manjuladevi, M. Thamilselvan, S. Selvasekarapandian, R. Mangalam, M. Premalatha and S. Monisha, Solid State Ion., 308, 90 (2017); https://doi.org/10.1016/j.ssi.2017.06.002
- H.M. Zaki, Physica B, 363, 232 (2005); https://doi.org/10.1016/j.physb.2005.03.026
- S. Ibrahim, S.M. Mohd Yasin, N.M. Nee, R. Ahmad and M.R. Johan, Solid State Commun., 152, 426 (2012); https://doi.org/10.1016/j.ssc.2011.11.037
- M.B. Hossena and A.K.M. Akther Hossain, J. Adv. Ceram., 4, 217 (2015); https://doi.org/10.1007/s40145-015-0152-2
- R.J. Sengwa, P. Dhatarwal and S. Choudhary, Solid State Ion., 324, 247 (2018); https://doi.org/10.1016/j.ssi.2018.07.015
- J.S. Kim, J. Phys. Soc. Jpn., 70, 3129 (2001); https://doi.org/10.1143/JPSJ.70.3129
- N. Kulshrestha, B. Chatterjee and P.N. Gupta, High Perform. Polym., 26, 677 (2014); https://doi.org/10.1177/0954008314541820
- K.P. Singh and P.N. Gupta, Eur. Polym. J., 34, 1023 (1998); https://doi.org/10.1016/S0014-3057(97)00207-3
- Y. Yang, J. He, G. Wu and J. Hu, Sci. Rep., 5, 16986 (2015); https://doi.org/10.1038/srep16986
- R. Baskaran, S. Selvasekarapandian, G. Hirankumar and M.S. Bhuvaneswari, Ionics, 10, 129 (2004); https://doi.org/10.1007/BF02410321
- S.A. Wahab, M. Ahmed, F. Radwan, R. Hassan and A. El-Refae, Mater. Lett., 30, 183 (1997); https://doi.org/10.1016/S0167-577X(96)00196-6
- K.S. Ngai, S. Ramesh, K. Ramesh and J.C. Juan, Chem. Phys. Lett., 692, 19 (2018); https://doi.org/10.1016/j.cplett.2017.11.042
- K. Nakamura, T. Saiwaki and K. Fukao, Macromolecules, 43, 6092 (2010); https://doi.org/10.1021/ma100918e
- S. Chopra, S. Sharma, T.C. Goel and R.G. Mendiratta, Solid State Commun., 127, 299 (2003); https://doi.org/10.1016/S0038-1098(03)00431-9
References
J.B. Goodenough and K.-S. Park, J. Am. Chem. Soc., 135, 1167 (2013); https://doi.org/10.1021/ja3091438
S. Dühnen, J. Betz, M. Kolek, R. Schmuch, M. Winter and T. Placke, Small Methods, 4, 2000039 (2020); https://doi.org/10.1002/smtd.202000039
L. Zhang, X. Li, M. Yang and W. Chen, Energy Storage Mater., 41, 522 (2021); https://doi.org/10.1016/j.ensm.2021.06.033
N. Mittal, A. Ojanguren, N. Cavasin, E. Lizundia and M. Niederberger, Adv. Funct. Mater., 31, 2101827 (2021); https://doi.org/10.1002/adfm.202101827
G. Foran, D. Mankovsky, N. Verdier, D. Lepage, A. Prébé, D. AyméPerrot and Mickaël Dollé, iScience, 23, 101597 (2020); https://doi.org/10.1016/j.isci.2020.101597
I. Osada, H. de Vries, B. Scrosati and S. Passerini, Angew. Chem. Int. Ed., 55, 500 (2016); https://doi.org/10.1002/anie.201504971
K.S. Ngai, S. Ramesh, K. Ramesh and J.C. Juan, Ionics, 22, 1259 (2016); https://doi.org/10.1007/s11581-016-1756-4
V.S. Voet, G. ten Brinke and K. Loos, J. Polym. Sci. A Polym. Chem., 52, 2861 (2014); https://doi.org/10.1002/pola.27340
Z. Qiu, X. Liu, J.W. Lam and B.Z. Tang, Macromol. Rapid Commun., 40, 1800568 (2019); https://doi.org/10.1002/marc.201800568
Y. Xia, X. Wang, X. Xia, R. Xu, S. Zhang, J. Wu, Y. Liang, C. Gu and J. Tu, Chem. Eur. J., 23, 15203 (2017); https://doi.org/10.1002/chem.201703464
J. Shi, Y. Yang and H. Shao, J. Membr. Sci., 547, 1 (2018); https://doi.org/10.1016/j.memsci.2017.10.033
R. Prasanth, N. Shubha, H.H. Hng and M. Srinivasan, Eur. Polym. J., 49, 307 (2013); https://doi.org/10.1016/j.eurpolymj.2012.10.033
M.F. Bósquez-Cáceres, S. Hidalgo-Bonilla, V. Morera Córdova, R.M. Michell and J.P. Tafur, Polymers, 13, 4284 (2021); https://doi.org/10.3390/polym13244284
J. Hu, W. Wang, B. Zhou, Y. Feng, X. Xie and Z. Xue, J. Membr. Sci., 575, 200 (2019); https://doi.org/10.1016/j.memsci.2019.01.025
A. Das, N.T. Balakrishnan, N.S. Jishnu, J.D. Joyner, J.H. Ahn, F.M. Jabeen and P. Raghavan, Eds.: P. Raghavan and M.J. Jabeen Fatima, In Polymer Electrolytes for Energy Storage Devices, CRC Press, pp. 133- 148 (2021).
K. Mishra, T. Arif, R. Kumar and D. Kumar, J. Solid State Electrochem., 23, 2401 (2019); https://doi.org/10.1007/s10008-019-04348-9
I.K. Sani, S.P. Geshlaghi, S. Pirsa and A. Asdagh, Food Hydrocoll., 117, 106719 (2021); https://doi.org/10.1016/j.foodhyd.2021.106719
W. Zheng, L. Ren, X. Zhao, C. Wang, L. Yang and R. Liao, Molecules, 27, 4289 (2022); https://doi.org/10.3390/molecules27134289
P. Sharma, D.K. Kanchan and N. Gondaliya, Open J. Org. Polym. Mater., 2, 38 (2012); https://doi.org/10.4236/ojopm.2012.22006
P. Dhatarwal and R. J. Sengwa, SN Appl. Sci., 2, 833 (2020); https://doi.org/10.1007/s42452-020-2656-9
S. Karthikeyan, S. Sikkanthar, S. Selvasekarapandian, D. Arunkumar, H. Nithya and J. Kawamura, J. Polym. Res., 23, 51 (2016); https://doi.org/10.1007/s10965-016-0952-2
P. Shanmugaraj, A. Swaminathan, R.K. Ravi, M. Dasaiah, P. Senthil Kumar and A. Sakunthala, J. Mater. Sci. Mater. Electron., 30, 20079 (2019); https://doi.org/10.1007/s10854-019-02380-z
K. Kiran Kumar, M. Ravi, Y. Pavani, S. Bhavani, A.K. Sharma and V.V.R. Narasimha Rao, J. Non-Cryst. Solids, 358, 3205 (2012); https://doi.org/10.1016/j.jnoncrysol.2012.08.022
D.K. Pradhan, R.N.P. Choudhary and B.K. Samantaray, Int. J. Electrochem. Sci., 3, 597 (2008).
A. Arya and A.L. Sharma, Ionics, 25, 1617 (2019); https://doi.org/10.1007/s11581-019-02916-7
R. Manjuladevi, M. Thamilselvan, S. Selvasekarapandian, R. Mangalam, M. Premalatha and S. Monisha, Solid State Ion., 308, 90 (2017); https://doi.org/10.1016/j.ssi.2017.06.002
H.M. Zaki, Physica B, 363, 232 (2005); https://doi.org/10.1016/j.physb.2005.03.026
S. Ibrahim, S.M. Mohd Yasin, N.M. Nee, R. Ahmad and M.R. Johan, Solid State Commun., 152, 426 (2012); https://doi.org/10.1016/j.ssc.2011.11.037
M.B. Hossena and A.K.M. Akther Hossain, J. Adv. Ceram., 4, 217 (2015); https://doi.org/10.1007/s40145-015-0152-2
R.J. Sengwa, P. Dhatarwal and S. Choudhary, Solid State Ion., 324, 247 (2018); https://doi.org/10.1016/j.ssi.2018.07.015
J.S. Kim, J. Phys. Soc. Jpn., 70, 3129 (2001); https://doi.org/10.1143/JPSJ.70.3129
N. Kulshrestha, B. Chatterjee and P.N. Gupta, High Perform. Polym., 26, 677 (2014); https://doi.org/10.1177/0954008314541820
K.P. Singh and P.N. Gupta, Eur. Polym. J., 34, 1023 (1998); https://doi.org/10.1016/S0014-3057(97)00207-3
Y. Yang, J. He, G. Wu and J. Hu, Sci. Rep., 5, 16986 (2015); https://doi.org/10.1038/srep16986
R. Baskaran, S. Selvasekarapandian, G. Hirankumar and M.S. Bhuvaneswari, Ionics, 10, 129 (2004); https://doi.org/10.1007/BF02410321
S.A. Wahab, M. Ahmed, F. Radwan, R. Hassan and A. El-Refae, Mater. Lett., 30, 183 (1997); https://doi.org/10.1016/S0167-577X(96)00196-6
K.S. Ngai, S. Ramesh, K. Ramesh and J.C. Juan, Chem. Phys. Lett., 692, 19 (2018); https://doi.org/10.1016/j.cplett.2017.11.042
K. Nakamura, T. Saiwaki and K. Fukao, Macromolecules, 43, 6092 (2010); https://doi.org/10.1021/ma100918e
S. Chopra, S. Sharma, T.C. Goel and R.G. Mendiratta, Solid State Commun., 127, 299 (2003); https://doi.org/10.1016/S0038-1098(03)00431-9