Electrochemical Investigations on the NO-Releasing Property of Ruthenium Nitrosyl Complex
Corresponding Author(s) : Joel H. Jorolan
Asian Journal of Chemistry,
Vol. 35 No. 1 (2023): Vol 35 Issue 1 page 52-56
Abstract
In this study, the NO-donating property of [Ru(BPG)Cl(NO)]Cl (BPG = N,N-bis(2-pyridylmethyl)glycinato anion) via electrochemical activation was assessed. The synthesized BPG and [Ru(BPG)Cl(NO)]Cl were characterized by UV-Vis and FT-IR spectroscopy. To determine if NO may be released from the compound via one-electron reduction, cyclic voltammetric experiments in aqueous and non-aqueous solutions were performed using a three-electrode cell consisting of glassy carbon working electrode, Pt wire counter electrode and Ag/AgCl or Ag/Ag+ reference electrode. The [Ru(BPG)Cl(NO)]Cl complex showed two one-electron reversible reductions in dimethylformamide, which suggests decreased ability as NO donor. In aqueous solution at pH 2.0, [Ru(BPG)Cl(NO)]Cl exhibited a one-electron irreversible reduction, which could be assigned to a Ru-NO centered reduction. The irreversibility of the reduction could be due to NO labilization and suggests that [Ru(BPG)Cl(NO)]Cl could be a potential NO donor in acidic aqueous medium.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.G. Aga and M.N. Hughes, Methods Enzymol., 436, 35 (2008); https://doi.org/10.1016/S0076-6879(08)36003-0
- N. Lehnert, E. Kim, H.T. Dong, J.B. Harland, A.P. Hunt, E.C. Manickas, K.M. Oakley, J. Pham, G.C. Reed and V.S. Alfaro, Chem. Rev., 121, 14682 (2021); https://doi.org/10.1021/acs.chemrev.1c00253
- J.V Esplugues, Br. J. Pharmacol., 135, 1079 (2002); https://doi.org/10.1038/sj.bjp.0704569
- M. Stefanovic-Racic, J. Stadler and C.H. Evans, Arthritis Rheum., 36, 1036 (1993); https://doi.org/10.1002/art.1780360803
- I.I. Singer, D.W. Kawka, S. Scott, J.R. Weidner, R.A. Mumford, T.E. Riehl and W.F. Stenson, Gastroenterology, 111, 871 (1996); https://doi.org/10.1016/S0016-5085(96)70055-0
- Q. Hamid, D. Springall, J.M. Polak, V. Riveros-Moreno, P. Chanez, J. Bousquet, P. Godard, S. Holgate, P. Howarth and A. Redington, Lancet, 342, 1510 (1993); https://doi.org/10.1016/S0140-6736(05)80083-2
- B.R. Cameron, M.C. Darkes, H. Yee, M. Olsen, S.P. Fricker, R.T. Skerlj, G.J. Bridger, N.A. Davies, M.T. Wilson, D.J. Rose and J. Zubieta, J. Inorg. Chem., 42, 1868 (2003); https://doi.org/10.1021/ic020219+
- T. Yamamoto, N. Kakar, E.R. Vina, P.E. Johnson and R.J. Bing, J. Life Sci., 67, 839 (2000); https://doi.org/10.1016/S0024-3205(00)00678-0
- T. Yamamoto and R.J. Bing, Proc. Soc. Exp. Biol. Med., 225, 200 (2000); https://doi.org/10.1046/j.1525-1373.2000.22525.x
- J.A. Hrabie and L.K. Keefer, Chem. Rev., 102, 1135 (2002); https://doi.org/10.1021/cr000028t
- P.G. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai and A. Janczuk, Chem. Rev., 102, 1091 (2002); https://doi.org/10.1021/cr000040l
- K. Wang, W. Zhang, M. Xian, Y.C. Hou, X.C. Chen, J.P. Cheng and P.G. Wang, Curr. Med. Chem., 7, 821 (2000); https://doi.org/10.2174/0929867003374633
- Y.C. Hou, A. Janczuk and P.G. Wang, Curr. Pharm. Des., 5, 417 (1999).
- G.R.J. Thatcher, Curr. Top. Med. Chem., 5, 597 (2005); https://doi.org/10.2174/1568026054679281
- H.H. Al’Sadoni and A. Ferro, Rev. Med. Chem., 5, 247 (2005); https://doi.org/10.2174/1389557053175399
- D.L.H. Williams, Acc. Chem. Res., 32, 869 (1999); https://doi.org/10.1021/ar9800439
- L.K. Keefer, Curr. Top. Med. Chem., 5, 625 (2005); https://doi.org/10.2174/1568026054679380
- L.K. Keefer, Annu. Rev. Pharmacol. Toxicol., 43, 585 (2003); https://doi.org/10.1146/annurev.pharmtox.43.100901.135831
- D.J. Smith, D. Chakravarthy, S. Pulfer, M.L. Simmons, J.A. Hrabie, M.L. Citro, J.E. Saavedra, K.M. Davies, T.C. Hutsell, D.L. Mooradian, S.R. Hanson and L.K. Keefer, J. Med. Chem., 39, 1148 (1996); https://doi.org/10.1021/jm950652b
- A.R. Butler and I.L. Megson, Chem. Rev., 102, 1155 (2002); https://doi.org/10.1021/cr000076d
- J.A. Friederich and J.F. Butterworth, Anesth. Analg., 81, 152 (1995).
- M. Klink and Z. Sulowska, Lett. Drug Des. Discov., 4, 55 (2007); https://doi.org/10.2174/157018007778992928
- C.S. Degoute, Drugs, 67, 1053 (2007); https://doi.org/10.2165/00003495-200767070-00007
- N.L. Fry and P.K. Mascharak, Acc. Chem. Res., 44, 289 (2011); https://doi.org/10.1021/ar100155t
- C.N. Lunardi, R.S. da Silva and L.M. Bendhack, Braz. J. Med. Biol. Res., 42, 87 (2009); https://doi.org/10.1590/S0100-879X2009000100013
- G.L.S. Rodrigues and W.R. Rocha, J. Phys. Chem. B, 120, 11821 (2016); https://doi.org/10.1021/acs.jpcb.6b08813
- A. Levina, A. Mitra and P.A. Lay, Metallomics, 1, 458 (2009); https://doi.org/10.1039/b904071d
- B.L. Wescott and J.H. Enemark, Eds.: E.I. Solomon and A.B.P. Lever, Inorganic Electronic Structure and Spectroscopy, Applications and Case Studies; John Wiley & Sons: New York, vol. II, pp. 403-450 (1999).
- D.A. Wink, J.F. Darbyshire, R.W. Nims, J.E. Saavedra and P.C. Ford, Chem. Res. Toxicol., 6, 23 (1993); https://doi.org/10.1021/tx00031a003
- M. Paulo, T.M. Banin, F.A. de Andrade and L.M. Bendhack, Future Med. Chem., 6, 825 (2014); https://doi.org/10.4155/fmc.14.26
- D.R. Lang, J.A. Davis, L.G.F. Lopes, A.A. Ferro, L.C.G. Vasconcellos, D.W. Franco, E. Tfouni, A. Wieraszko and M.J. Clarke, Inorg. Chem., 39, 2294 (2000); https://doi.org/10.1021/ic9912979
- L.G.F. Lopes, A. Wieraszko, Y. El-Sherif and M.J. Clarke, Inorg. Chim. Acta, 312, 15 (2001); https://doi.org/10.1016/S0020-1693(00)00341-8
- J.M. Slocik and R.E. Shepherd, Inorg. Chim. Acta, 311, 80 (2000); https://doi.org/10.1016/S0020-1693(00)00309-1
- J.M. Slocik, M.S. Ward, K.V. Somayajula and R.E. Shepherd, Transition Met. Chem., 26, 351 (2001); https://doi.org/10.1023/A:1007194314107
- J.N. Bates, M.T. Baker, R. Guerra Jr. and D.G. Harrison, Biochem. Pharmacol., 42, S157 (1991); https://doi.org/10.1016/0006-2952(91)90406-U
- P.R. Shafer, D.E. Wilcox, H. Kruszyna, R. Kruszyna and R.P. Smith, Toxicol. Appl. Pharmacol., 99, 1 (1989); https://doi.org/10.1016/0041-008X(89)90105-1
- W.P. Arnold, D.E. Longnecker and R.M. Epstein, Anesthesiology, 61, 254 (1984); https://doi.org/10.1097/00000542-198409000-00004
- A.C. Merkle, Ph.D. Dissertation, Investigation of the Electronic Structure and Photolability of Copper-, Manganese-, and RutheniumNitrosyl Complexes, The University of Michigan, USA (2012).
- S. Moncada, R.M.J. Palmer and E.A. Higgs, Pharmacol. Rev., 43, 109 (1991).
- P.L. Feldman, O.W. Griffith and D. Stuehr, J. Chem. Eng. News, 71, 26 (1993).
- D.A. Wink, I. Hanbauer, M.B. Grisham, F. Laval, R.W. Nims, J. Laval, J. Cook, R. Pacelli, J. Liebmann, M. Krishna, P.C. Ford and J.B. Mitchell, Curr. Top. Cell. Regul., 34, 159 (1996); https://doi.org/10.1016/S0070-2137(96)80006-9
- M. Feelish and J.S. Stamler, Methods in Nitric Oxide Research, John Wiley & Sons: Chichester, England (1996).
- H. Wiseman and B. Halliwell, Biochem. J., 313, 17 (1996); https://doi.org/10.1042/bj3130017
- D.A. Wink, Y. Vodovotz, J. Laval, F. Laval, M.W. Dewhirst and J.B. Mitchell, Carcinogenesis, 19, 711 (1998); https://doi.org/10.1093/carcin/19.5.711
- J. Bordini, D.L. Hughes, J.D. Da Motta-Neto and C. Jorge da Cunha, Inorg. Chem., 41, 5410 (2002); https://doi.org/10.1021/ic011273d
- G.B. Richter-Addo and P. Legzdins, Metal Nitrosyls, Oxford University Press: Oxford (1992).
- M.J. Clarke, Coord. Chem. Rev., 236, 209 (2003); https://doi.org/10.1016/S0010-8545(02)00312-0
- E. Tfouni, M. Krieger, B.R. McGarvey and D.W. Franco, Coord. Chem. Rev., 236, 57 (2003); https://doi.org/10.1016/S0010-8545(02)00177-7
- C.J. Marmion, B. Cameron, C. Mulcahy and S.P. Fricker, Curr. Top. Med. Chem., 4, 1585 (2004); https://doi.org/10.2174/1568026043387322