Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Investigations on the NO-Releasing Property of Ruthenium Nitrosyl Complex
Corresponding Author(s) : Joel H. Jorolan
Asian Journal of Chemistry,
Vol. 35 No. 1 (2023): Vol 35 Issue 1
Abstract
In this study, the NO-donating property of [Ru(BPG)Cl(NO)]Cl (BPG = N,N-bis(2-pyridylmethyl)glycinato anion) via electrochemical activation was assessed. The synthesized BPG and [Ru(BPG)Cl(NO)]Cl were characterized by UV-Vis and FT-IR spectroscopy. To determine if NO may be released from the compound via one-electron reduction, cyclic voltammetric experiments in aqueous and non-aqueous solutions were performed using a three-electrode cell consisting of glassy carbon working electrode, Pt wire counter electrode and Ag/AgCl or Ag/Ag+ reference electrode. The [Ru(BPG)Cl(NO)]Cl complex showed two one-electron reversible reductions in dimethylformamide, which suggests decreased ability as NO donor. In aqueous solution at pH 2.0, [Ru(BPG)Cl(NO)]Cl exhibited a one-electron irreversible reduction, which could be assigned to a Ru-NO centered reduction. The irreversibility of the reduction could be due to NO labilization and suggests that [Ru(BPG)Cl(NO)]Cl could be a potential NO donor in acidic aqueous medium.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.G. Aga and M.N. Hughes, Methods Enzymol., 436, 35 (2008); https://doi.org/10.1016/S0076-6879(08)36003-0
- N. Lehnert, E. Kim, H.T. Dong, J.B. Harland, A.P. Hunt, E.C. Manickas, K.M. Oakley, J. Pham, G.C. Reed and V.S. Alfaro, Chem. Rev., 121, 14682 (2021); https://doi.org/10.1021/acs.chemrev.1c00253
- J.V Esplugues, Br. J. Pharmacol., 135, 1079 (2002); https://doi.org/10.1038/sj.bjp.0704569
- M. Stefanovic-Racic, J. Stadler and C.H. Evans, Arthritis Rheum., 36, 1036 (1993); https://doi.org/10.1002/art.1780360803
- I.I. Singer, D.W. Kawka, S. Scott, J.R. Weidner, R.A. Mumford, T.E. Riehl and W.F. Stenson, Gastroenterology, 111, 871 (1996); https://doi.org/10.1016/S0016-5085(96)70055-0
- Q. Hamid, D. Springall, J.M. Polak, V. Riveros-Moreno, P. Chanez, J. Bousquet, P. Godard, S. Holgate, P. Howarth and A. Redington, Lancet, 342, 1510 (1993); https://doi.org/10.1016/S0140-6736(05)80083-2
- B.R. Cameron, M.C. Darkes, H. Yee, M. Olsen, S.P. Fricker, R.T. Skerlj, G.J. Bridger, N.A. Davies, M.T. Wilson, D.J. Rose and J. Zubieta, J. Inorg. Chem., 42, 1868 (2003); https://doi.org/10.1021/ic020219+
- T. Yamamoto, N. Kakar, E.R. Vina, P.E. Johnson and R.J. Bing, J. Life Sci., 67, 839 (2000); https://doi.org/10.1016/S0024-3205(00)00678-0
- T. Yamamoto and R.J. Bing, Proc. Soc. Exp. Biol. Med., 225, 200 (2000); https://doi.org/10.1046/j.1525-1373.2000.22525.x
- J.A. Hrabie and L.K. Keefer, Chem. Rev., 102, 1135 (2002); https://doi.org/10.1021/cr000028t
- P.G. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai and A. Janczuk, Chem. Rev., 102, 1091 (2002); https://doi.org/10.1021/cr000040l
- K. Wang, W. Zhang, M. Xian, Y.C. Hou, X.C. Chen, J.P. Cheng and P.G. Wang, Curr. Med. Chem., 7, 821 (2000); https://doi.org/10.2174/0929867003374633
- Y.C. Hou, A. Janczuk and P.G. Wang, Curr. Pharm. Des., 5, 417 (1999).
- G.R.J. Thatcher, Curr. Top. Med. Chem., 5, 597 (2005); https://doi.org/10.2174/1568026054679281
- H.H. Al’Sadoni and A. Ferro, Rev. Med. Chem., 5, 247 (2005); https://doi.org/10.2174/1389557053175399
- D.L.H. Williams, Acc. Chem. Res., 32, 869 (1999); https://doi.org/10.1021/ar9800439
- L.K. Keefer, Curr. Top. Med. Chem., 5, 625 (2005); https://doi.org/10.2174/1568026054679380
- L.K. Keefer, Annu. Rev. Pharmacol. Toxicol., 43, 585 (2003); https://doi.org/10.1146/annurev.pharmtox.43.100901.135831
- D.J. Smith, D. Chakravarthy, S. Pulfer, M.L. Simmons, J.A. Hrabie, M.L. Citro, J.E. Saavedra, K.M. Davies, T.C. Hutsell, D.L. Mooradian, S.R. Hanson and L.K. Keefer, J. Med. Chem., 39, 1148 (1996); https://doi.org/10.1021/jm950652b
- A.R. Butler and I.L. Megson, Chem. Rev., 102, 1155 (2002); https://doi.org/10.1021/cr000076d
- J.A. Friederich and J.F. Butterworth, Anesth. Analg., 81, 152 (1995).
- M. Klink and Z. Sulowska, Lett. Drug Des. Discov., 4, 55 (2007); https://doi.org/10.2174/157018007778992928
- C.S. Degoute, Drugs, 67, 1053 (2007); https://doi.org/10.2165/00003495-200767070-00007
- N.L. Fry and P.K. Mascharak, Acc. Chem. Res., 44, 289 (2011); https://doi.org/10.1021/ar100155t
- C.N. Lunardi, R.S. da Silva and L.M. Bendhack, Braz. J. Med. Biol. Res., 42, 87 (2009); https://doi.org/10.1590/S0100-879X2009000100013
- G.L.S. Rodrigues and W.R. Rocha, J. Phys. Chem. B, 120, 11821 (2016); https://doi.org/10.1021/acs.jpcb.6b08813
- A. Levina, A. Mitra and P.A. Lay, Metallomics, 1, 458 (2009); https://doi.org/10.1039/b904071d
- B.L. Wescott and J.H. Enemark, Eds.: E.I. Solomon and A.B.P. Lever, Inorganic Electronic Structure and Spectroscopy, Applications and Case Studies; John Wiley & Sons: New York, vol. II, pp. 403-450 (1999).
- D.A. Wink, J.F. Darbyshire, R.W. Nims, J.E. Saavedra and P.C. Ford, Chem. Res. Toxicol., 6, 23 (1993); https://doi.org/10.1021/tx00031a003
- M. Paulo, T.M. Banin, F.A. de Andrade and L.M. Bendhack, Future Med. Chem., 6, 825 (2014); https://doi.org/10.4155/fmc.14.26
- D.R. Lang, J.A. Davis, L.G.F. Lopes, A.A. Ferro, L.C.G. Vasconcellos, D.W. Franco, E. Tfouni, A. Wieraszko and M.J. Clarke, Inorg. Chem., 39, 2294 (2000); https://doi.org/10.1021/ic9912979
- L.G.F. Lopes, A. Wieraszko, Y. El-Sherif and M.J. Clarke, Inorg. Chim. Acta, 312, 15 (2001); https://doi.org/10.1016/S0020-1693(00)00341-8
- J.M. Slocik and R.E. Shepherd, Inorg. Chim. Acta, 311, 80 (2000); https://doi.org/10.1016/S0020-1693(00)00309-1
- J.M. Slocik, M.S. Ward, K.V. Somayajula and R.E. Shepherd, Transition Met. Chem., 26, 351 (2001); https://doi.org/10.1023/A:1007194314107
- J.N. Bates, M.T. Baker, R. Guerra Jr. and D.G. Harrison, Biochem. Pharmacol., 42, S157 (1991); https://doi.org/10.1016/0006-2952(91)90406-U
- P.R. Shafer, D.E. Wilcox, H. Kruszyna, R. Kruszyna and R.P. Smith, Toxicol. Appl. Pharmacol., 99, 1 (1989); https://doi.org/10.1016/0041-008X(89)90105-1
- W.P. Arnold, D.E. Longnecker and R.M. Epstein, Anesthesiology, 61, 254 (1984); https://doi.org/10.1097/00000542-198409000-00004
- A.C. Merkle, Ph.D. Dissertation, Investigation of the Electronic Structure and Photolability of Copper-, Manganese-, and RutheniumNitrosyl Complexes, The University of Michigan, USA (2012).
- S. Moncada, R.M.J. Palmer and E.A. Higgs, Pharmacol. Rev., 43, 109 (1991).
- P.L. Feldman, O.W. Griffith and D. Stuehr, J. Chem. Eng. News, 71, 26 (1993).
- D.A. Wink, I. Hanbauer, M.B. Grisham, F. Laval, R.W. Nims, J. Laval, J. Cook, R. Pacelli, J. Liebmann, M. Krishna, P.C. Ford and J.B. Mitchell, Curr. Top. Cell. Regul., 34, 159 (1996); https://doi.org/10.1016/S0070-2137(96)80006-9
- M. Feelish and J.S. Stamler, Methods in Nitric Oxide Research, John Wiley & Sons: Chichester, England (1996).
- H. Wiseman and B. Halliwell, Biochem. J., 313, 17 (1996); https://doi.org/10.1042/bj3130017
- D.A. Wink, Y. Vodovotz, J. Laval, F. Laval, M.W. Dewhirst and J.B. Mitchell, Carcinogenesis, 19, 711 (1998); https://doi.org/10.1093/carcin/19.5.711
- J. Bordini, D.L. Hughes, J.D. Da Motta-Neto and C. Jorge da Cunha, Inorg. Chem., 41, 5410 (2002); https://doi.org/10.1021/ic011273d
- G.B. Richter-Addo and P. Legzdins, Metal Nitrosyls, Oxford University Press: Oxford (1992).
- M.J. Clarke, Coord. Chem. Rev., 236, 209 (2003); https://doi.org/10.1016/S0010-8545(02)00312-0
- E. Tfouni, M. Krieger, B.R. McGarvey and D.W. Franco, Coord. Chem. Rev., 236, 57 (2003); https://doi.org/10.1016/S0010-8545(02)00177-7
- C.J. Marmion, B. Cameron, C. Mulcahy and S.P. Fricker, Curr. Top. Med. Chem., 4, 1585 (2004); https://doi.org/10.2174/1568026043387322
References
R.G. Aga and M.N. Hughes, Methods Enzymol., 436, 35 (2008); https://doi.org/10.1016/S0076-6879(08)36003-0
N. Lehnert, E. Kim, H.T. Dong, J.B. Harland, A.P. Hunt, E.C. Manickas, K.M. Oakley, J. Pham, G.C. Reed and V.S. Alfaro, Chem. Rev., 121, 14682 (2021); https://doi.org/10.1021/acs.chemrev.1c00253
J.V Esplugues, Br. J. Pharmacol., 135, 1079 (2002); https://doi.org/10.1038/sj.bjp.0704569
M. Stefanovic-Racic, J. Stadler and C.H. Evans, Arthritis Rheum., 36, 1036 (1993); https://doi.org/10.1002/art.1780360803
I.I. Singer, D.W. Kawka, S. Scott, J.R. Weidner, R.A. Mumford, T.E. Riehl and W.F. Stenson, Gastroenterology, 111, 871 (1996); https://doi.org/10.1016/S0016-5085(96)70055-0
Q. Hamid, D. Springall, J.M. Polak, V. Riveros-Moreno, P. Chanez, J. Bousquet, P. Godard, S. Holgate, P. Howarth and A. Redington, Lancet, 342, 1510 (1993); https://doi.org/10.1016/S0140-6736(05)80083-2
B.R. Cameron, M.C. Darkes, H. Yee, M. Olsen, S.P. Fricker, R.T. Skerlj, G.J. Bridger, N.A. Davies, M.T. Wilson, D.J. Rose and J. Zubieta, J. Inorg. Chem., 42, 1868 (2003); https://doi.org/10.1021/ic020219+
T. Yamamoto, N. Kakar, E.R. Vina, P.E. Johnson and R.J. Bing, J. Life Sci., 67, 839 (2000); https://doi.org/10.1016/S0024-3205(00)00678-0
T. Yamamoto and R.J. Bing, Proc. Soc. Exp. Biol. Med., 225, 200 (2000); https://doi.org/10.1046/j.1525-1373.2000.22525.x
J.A. Hrabie and L.K. Keefer, Chem. Rev., 102, 1135 (2002); https://doi.org/10.1021/cr000028t
P.G. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai and A. Janczuk, Chem. Rev., 102, 1091 (2002); https://doi.org/10.1021/cr000040l
K. Wang, W. Zhang, M. Xian, Y.C. Hou, X.C. Chen, J.P. Cheng and P.G. Wang, Curr. Med. Chem., 7, 821 (2000); https://doi.org/10.2174/0929867003374633
Y.C. Hou, A. Janczuk and P.G. Wang, Curr. Pharm. Des., 5, 417 (1999).
G.R.J. Thatcher, Curr. Top. Med. Chem., 5, 597 (2005); https://doi.org/10.2174/1568026054679281
H.H. Al’Sadoni and A. Ferro, Rev. Med. Chem., 5, 247 (2005); https://doi.org/10.2174/1389557053175399
D.L.H. Williams, Acc. Chem. Res., 32, 869 (1999); https://doi.org/10.1021/ar9800439
L.K. Keefer, Curr. Top. Med. Chem., 5, 625 (2005); https://doi.org/10.2174/1568026054679380
L.K. Keefer, Annu. Rev. Pharmacol. Toxicol., 43, 585 (2003); https://doi.org/10.1146/annurev.pharmtox.43.100901.135831
D.J. Smith, D. Chakravarthy, S. Pulfer, M.L. Simmons, J.A. Hrabie, M.L. Citro, J.E. Saavedra, K.M. Davies, T.C. Hutsell, D.L. Mooradian, S.R. Hanson and L.K. Keefer, J. Med. Chem., 39, 1148 (1996); https://doi.org/10.1021/jm950652b
A.R. Butler and I.L. Megson, Chem. Rev., 102, 1155 (2002); https://doi.org/10.1021/cr000076d
J.A. Friederich and J.F. Butterworth, Anesth. Analg., 81, 152 (1995).
M. Klink and Z. Sulowska, Lett. Drug Des. Discov., 4, 55 (2007); https://doi.org/10.2174/157018007778992928
C.S. Degoute, Drugs, 67, 1053 (2007); https://doi.org/10.2165/00003495-200767070-00007
N.L. Fry and P.K. Mascharak, Acc. Chem. Res., 44, 289 (2011); https://doi.org/10.1021/ar100155t
C.N. Lunardi, R.S. da Silva and L.M. Bendhack, Braz. J. Med. Biol. Res., 42, 87 (2009); https://doi.org/10.1590/S0100-879X2009000100013
G.L.S. Rodrigues and W.R. Rocha, J. Phys. Chem. B, 120, 11821 (2016); https://doi.org/10.1021/acs.jpcb.6b08813
A. Levina, A. Mitra and P.A. Lay, Metallomics, 1, 458 (2009); https://doi.org/10.1039/b904071d
B.L. Wescott and J.H. Enemark, Eds.: E.I. Solomon and A.B.P. Lever, Inorganic Electronic Structure and Spectroscopy, Applications and Case Studies; John Wiley & Sons: New York, vol. II, pp. 403-450 (1999).
D.A. Wink, J.F. Darbyshire, R.W. Nims, J.E. Saavedra and P.C. Ford, Chem. Res. Toxicol., 6, 23 (1993); https://doi.org/10.1021/tx00031a003
M. Paulo, T.M. Banin, F.A. de Andrade and L.M. Bendhack, Future Med. Chem., 6, 825 (2014); https://doi.org/10.4155/fmc.14.26
D.R. Lang, J.A. Davis, L.G.F. Lopes, A.A. Ferro, L.C.G. Vasconcellos, D.W. Franco, E. Tfouni, A. Wieraszko and M.J. Clarke, Inorg. Chem., 39, 2294 (2000); https://doi.org/10.1021/ic9912979
L.G.F. Lopes, A. Wieraszko, Y. El-Sherif and M.J. Clarke, Inorg. Chim. Acta, 312, 15 (2001); https://doi.org/10.1016/S0020-1693(00)00341-8
J.M. Slocik and R.E. Shepherd, Inorg. Chim. Acta, 311, 80 (2000); https://doi.org/10.1016/S0020-1693(00)00309-1
J.M. Slocik, M.S. Ward, K.V. Somayajula and R.E. Shepherd, Transition Met. Chem., 26, 351 (2001); https://doi.org/10.1023/A:1007194314107
J.N. Bates, M.T. Baker, R. Guerra Jr. and D.G. Harrison, Biochem. Pharmacol., 42, S157 (1991); https://doi.org/10.1016/0006-2952(91)90406-U
P.R. Shafer, D.E. Wilcox, H. Kruszyna, R. Kruszyna and R.P. Smith, Toxicol. Appl. Pharmacol., 99, 1 (1989); https://doi.org/10.1016/0041-008X(89)90105-1
W.P. Arnold, D.E. Longnecker and R.M. Epstein, Anesthesiology, 61, 254 (1984); https://doi.org/10.1097/00000542-198409000-00004
A.C. Merkle, Ph.D. Dissertation, Investigation of the Electronic Structure and Photolability of Copper-, Manganese-, and RutheniumNitrosyl Complexes, The University of Michigan, USA (2012).
S. Moncada, R.M.J. Palmer and E.A. Higgs, Pharmacol. Rev., 43, 109 (1991).
P.L. Feldman, O.W. Griffith and D. Stuehr, J. Chem. Eng. News, 71, 26 (1993).
D.A. Wink, I. Hanbauer, M.B. Grisham, F. Laval, R.W. Nims, J. Laval, J. Cook, R. Pacelli, J. Liebmann, M. Krishna, P.C. Ford and J.B. Mitchell, Curr. Top. Cell. Regul., 34, 159 (1996); https://doi.org/10.1016/S0070-2137(96)80006-9
M. Feelish and J.S. Stamler, Methods in Nitric Oxide Research, John Wiley & Sons: Chichester, England (1996).
H. Wiseman and B. Halliwell, Biochem. J., 313, 17 (1996); https://doi.org/10.1042/bj3130017
D.A. Wink, Y. Vodovotz, J. Laval, F. Laval, M.W. Dewhirst and J.B. Mitchell, Carcinogenesis, 19, 711 (1998); https://doi.org/10.1093/carcin/19.5.711
J. Bordini, D.L. Hughes, J.D. Da Motta-Neto and C. Jorge da Cunha, Inorg. Chem., 41, 5410 (2002); https://doi.org/10.1021/ic011273d
G.B. Richter-Addo and P. Legzdins, Metal Nitrosyls, Oxford University Press: Oxford (1992).
M.J. Clarke, Coord. Chem. Rev., 236, 209 (2003); https://doi.org/10.1016/S0010-8545(02)00312-0
E. Tfouni, M. Krieger, B.R. McGarvey and D.W. Franco, Coord. Chem. Rev., 236, 57 (2003); https://doi.org/10.1016/S0010-8545(02)00177-7
C.J. Marmion, B. Cameron, C. Mulcahy and S.P. Fricker, Curr. Top. Med. Chem., 4, 1585 (2004); https://doi.org/10.2174/1568026043387322