Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Hydrothermal Synthesis of Copper-Decorated Titanium Dioxide Spherulites and their Photocatalytic Activity against Reactive Dyes
Corresponding Author(s) : R.A. Klaivani
Asian Journal of Chemistry,
Vol. 35 No. 1 (2023): Vol 35 Issue 1
Abstract
The untreated discharge of industrial dyes into water supplies is a likely occurrence that can cause a number of dangerous scenarios that are hazardous for the ecology. Herein, a simple hydrothermal strategy for synthesizing copper-doped titanium dioxide nanoparticles (Cu-TiO2) were presented and investigated its ability to photocatalytically degrade dyes e.g. reactive black 5 (RB5), red 198 (RR198) and yellow 145 dyes (RY145). Firstly, the as-synthesized Cu-TiO2 nanoparticles were characterized using powder X-ray diffraction (PXRD), UV-diffuse reflectance spectroscopy (UV-DRS), high resolution-scanning electron microscopy (HR-SEM) and transmission electron microscopy (TEM) techniques. Furthermore, the photocatalysis experiments were conducted using three reactive dye solutions at different concentrations, pH, duration, etc. The spherulitic Cu-TiO2 photocatalyst exhibited superior catalytic activity against the dyes and was able to achieve 82, 88 and 90% efficiencies for RB5, RR198 and RY145 dyes, respectively. The kinetics and the reusability parameters were also elaborated with respect to the obtained results. Therefore, Cu-TiO2 spherulites are professed to be effectual photocatalyst materials for industrial scale dye degradation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E.M. Saggioro, A.S. Oliveira, T. Pavesi, C.G. Maia, L.F.V. Ferreira and J.C. Moreira, Molecules, 16, 10370 (2011); https://doi.org/10.3390/molecules161210370
- M. Solís, A. Solís, H.I. Pérez, N. Manjarrez and M. Flores, Process Biochem., 47, 1723 (2012); https://doi.org/10.1016/j.procbio.2012.08.014
- F. Mcyotto, Q. Wei, D.K. Macharia, M. Huang, C. Shen and C.W.K. Chow, Chem. Eng. J., 2021, 405 (2020); https://doi.org/10.1016/j.cej.2020.126674
- S. Mishra and A. Maiti, Environ. Sci. Pollut. Res. Int., 25, 8286 (2018); https://doi.org/10.1007/s11356-018-1273-2
- T. Shindhal, P. Rakholiya, S. Varjani, A. Pandey, H.H. Ngo, W. Guo, H.Y. Ng and M.J. Taherzadeh, Bioengineered, 12, 70 (2021); https://doi.org/10.1080/21655979.2020.1863034
- A. Sintakindi and B. Ankamwar, Environ. Technol. Rev., 10, 26 (2021); https://doi.org/10.1080/21622515.2020.1869322
- P.K. Yeow, S.W. Wong and T. Hadibarata, Biointerface Res. Appl. Chem., 11, 8218 (2020); https://doi.org/10.33263/BRIAC111.82188232
- R. Nithya, A. Thirunavukkarasu, A.B. Sathya and R. Sivashankar, Environ. Chem. Lett., 19, 1275 (2021); https://doi.org/10.1007/s10311-020-01149-9
- O.T. Can, M. Kobya, E. Demirbas and M. Bayramoglu, Chemosphere, 62, 181 (2006); https://doi.org/10.1016/j.chemosphere.2005.05.022
- K. Sathishkumar, M.S. AlSalhi, E. Sanganyado, S. Devanesan, A. Arulprakash and A. Rajasekar, J. Photochem. Photobiol. B, 200, 111655 (2019); https://doi.org/10.1016/j.jphotobiol.2019.111655
- C.B. Li, F. Xiao, W. Xu, Y. Chu, Q. Wang, H. Jiang, K. Li and X.W. Gao, Chemosphere, 266, 129209 (2021); https://doi.org/10.1016/j.chemosphere.2020.129209
- S.P. Azerrad and E. Kurzbaum, Water Air Soil Pollut., 232, 40 (2021); https://doi.org/10.1007/s11270-021-04997-5
- A. Yu, Q. Wang, J. Wang and C. Chang, Catal. Commun., 90, 75 (2017); https://doi.org/10.1016/j.catcom.2016.11.004
- N. Riaz, F.K. Chong, Z.B. Man, R. Sarwar, U. Farooq, A. Khan and M.S. Khan, RSC Adv., 6, 55650 (2016); https://doi.org/10.1039/C6RA10371E
- Z. Liu, R. Liu, Y. Yi, W. Han, F. Kong and S. Wang, Carbohydr. Polym., 223, 115081 (2019); https://doi.org/10.1016/j.carbpol.2019.115081
- R.K. Mulpuri, S.R. Tirukkovalluri, M.R. Imandi, S.A. Alim and V.D.L. Kapuganti, Sustain. Environ. Res., 29, 1 (2019); https://doi.org/10.1186/s42834-019-0031-6
- C.A. D’Amato, R. Giovannetti, M. Zannotti, E. Rommozzi, S. Ferraro, C. Seghetti, M. Minicucci, R. Gunnella and A. Di Cicco, Appl. Surf. Sci., 441, 575 (2018); https://doi.org/10.1016/j.apsusc.2018.01.290
- S. Chkirida, N. Zari, R. Achour, A. Qaiss and R. Bouhfid, Environ. Sci. Pollut. Res. Int., 28, 14018 (2021); https://doi.org/10.1007/s11356-020-11664-5
- X.J. Yang, S. Wang, H.M. Sun, X.B. Wang and J.S. Lian, Trans. Nonferrous Met. Soc. China, 25, 504 (2015); https://doi.org/10.1016/S1003-6326(15)63631-7
- Y. Zhang, Y. Meng, K. Zhu, H. Qiu, Y. Ju, Y. Gao, F. Du, B. Zou, G. Chen and Y. Wei, ACS Appl. Mater. Interfaces, 8, 7957 (2016); https://doi.org/10.1021/acsami.5b10766
- T. Aguilar, J. Navas, R. Alcántara, C. Fernández-Lorenzo, J.J. Gallardo, G. Blanco and J. Martín-Calleja, Chem. Phys. Lett., 571, 49 (2013); https://doi.org/10.1016/j.cplett.2013.04.007
- N. Ghobadi, Int. Nano Lett., 3, 2 (2013); https://doi.org/10.1186/2228-5326-3-2
- J.C.-T. Lin, K. Sopajaree, T. Jitjanesuwan and M.-C. Lu, Sep. Purif. Technol., 191, 233 (2018); https://doi.org/10.1016/j.seppur.2017.09.027
- R.R. Mathiarasu, A. Manikandan, J.N. Baby, K. Panneerselvam, R. Subashchandrabose, M. George, Y. Slimani, M.A. Almessiere and A. Baykal, Physica B, 615, 413068 (2021); https://doi.org/10.1016/j.physb.2021.413068
- P. Pongwan, K. Wetchakun, S. Phanichphant and N. Wetchakun, Res. Chem. Intermed., 42, 2815 (2016); https://doi.org/10.1007/s11164-015-2179-y
- A.A. Kashale, P.K. Dwivedi, B.R. Sathe, M.V. Shelke, J.Y. Chang and A.V. Ghule, ACS Omega, 3, 13676 (2018); https://doi.org/10.1021/acsomega.8b01903
- R. Rehman, Waheed-Uz-Zaman, A. Raza, W. Noor, A. Batool and H. Maryem, J. Chem., 2021, 6655070 (2021); https://doi.org/10.1155/2021/6655070
- C. Tang and V. Chen, Water Res., 38, 2775 (2004); https://doi.org/10.1016/j.watres.2004.03.020
- K.M. Reza, A. Kurny and F. Gulshan, Appl. Water Sci., 7, 1569 (2017); https://doi.org/10.1007/s13201-015-0367-y
- R.R. Mathiarasu, A. Manikandan, K. Panneerselvam, M. George, K.K. Raja, M.A. Almessiere, Y. Slimani, A. Baykal, A.M. Asiri, T. Kamal and A. Khan, J. Mater. Res. Technol., 15, 5936 (2021); https://doi.org/10.1016/j.jmrt.2021.11.047
References
E.M. Saggioro, A.S. Oliveira, T. Pavesi, C.G. Maia, L.F.V. Ferreira and J.C. Moreira, Molecules, 16, 10370 (2011); https://doi.org/10.3390/molecules161210370
M. Solís, A. Solís, H.I. Pérez, N. Manjarrez and M. Flores, Process Biochem., 47, 1723 (2012); https://doi.org/10.1016/j.procbio.2012.08.014
F. Mcyotto, Q. Wei, D.K. Macharia, M. Huang, C. Shen and C.W.K. Chow, Chem. Eng. J., 2021, 405 (2020); https://doi.org/10.1016/j.cej.2020.126674
S. Mishra and A. Maiti, Environ. Sci. Pollut. Res. Int., 25, 8286 (2018); https://doi.org/10.1007/s11356-018-1273-2
T. Shindhal, P. Rakholiya, S. Varjani, A. Pandey, H.H. Ngo, W. Guo, H.Y. Ng and M.J. Taherzadeh, Bioengineered, 12, 70 (2021); https://doi.org/10.1080/21655979.2020.1863034
A. Sintakindi and B. Ankamwar, Environ. Technol. Rev., 10, 26 (2021); https://doi.org/10.1080/21622515.2020.1869322
P.K. Yeow, S.W. Wong and T. Hadibarata, Biointerface Res. Appl. Chem., 11, 8218 (2020); https://doi.org/10.33263/BRIAC111.82188232
R. Nithya, A. Thirunavukkarasu, A.B. Sathya and R. Sivashankar, Environ. Chem. Lett., 19, 1275 (2021); https://doi.org/10.1007/s10311-020-01149-9
O.T. Can, M. Kobya, E. Demirbas and M. Bayramoglu, Chemosphere, 62, 181 (2006); https://doi.org/10.1016/j.chemosphere.2005.05.022
K. Sathishkumar, M.S. AlSalhi, E. Sanganyado, S. Devanesan, A. Arulprakash and A. Rajasekar, J. Photochem. Photobiol. B, 200, 111655 (2019); https://doi.org/10.1016/j.jphotobiol.2019.111655
C.B. Li, F. Xiao, W. Xu, Y. Chu, Q. Wang, H. Jiang, K. Li and X.W. Gao, Chemosphere, 266, 129209 (2021); https://doi.org/10.1016/j.chemosphere.2020.129209
S.P. Azerrad and E. Kurzbaum, Water Air Soil Pollut., 232, 40 (2021); https://doi.org/10.1007/s11270-021-04997-5
A. Yu, Q. Wang, J. Wang and C. Chang, Catal. Commun., 90, 75 (2017); https://doi.org/10.1016/j.catcom.2016.11.004
N. Riaz, F.K. Chong, Z.B. Man, R. Sarwar, U. Farooq, A. Khan and M.S. Khan, RSC Adv., 6, 55650 (2016); https://doi.org/10.1039/C6RA10371E
Z. Liu, R. Liu, Y. Yi, W. Han, F. Kong and S. Wang, Carbohydr. Polym., 223, 115081 (2019); https://doi.org/10.1016/j.carbpol.2019.115081
R.K. Mulpuri, S.R. Tirukkovalluri, M.R. Imandi, S.A. Alim and V.D.L. Kapuganti, Sustain. Environ. Res., 29, 1 (2019); https://doi.org/10.1186/s42834-019-0031-6
C.A. D’Amato, R. Giovannetti, M. Zannotti, E. Rommozzi, S. Ferraro, C. Seghetti, M. Minicucci, R. Gunnella and A. Di Cicco, Appl. Surf. Sci., 441, 575 (2018); https://doi.org/10.1016/j.apsusc.2018.01.290
S. Chkirida, N. Zari, R. Achour, A. Qaiss and R. Bouhfid, Environ. Sci. Pollut. Res. Int., 28, 14018 (2021); https://doi.org/10.1007/s11356-020-11664-5
X.J. Yang, S. Wang, H.M. Sun, X.B. Wang and J.S. Lian, Trans. Nonferrous Met. Soc. China, 25, 504 (2015); https://doi.org/10.1016/S1003-6326(15)63631-7
Y. Zhang, Y. Meng, K. Zhu, H. Qiu, Y. Ju, Y. Gao, F. Du, B. Zou, G. Chen and Y. Wei, ACS Appl. Mater. Interfaces, 8, 7957 (2016); https://doi.org/10.1021/acsami.5b10766
T. Aguilar, J. Navas, R. Alcántara, C. Fernández-Lorenzo, J.J. Gallardo, G. Blanco and J. Martín-Calleja, Chem. Phys. Lett., 571, 49 (2013); https://doi.org/10.1016/j.cplett.2013.04.007
N. Ghobadi, Int. Nano Lett., 3, 2 (2013); https://doi.org/10.1186/2228-5326-3-2
J.C.-T. Lin, K. Sopajaree, T. Jitjanesuwan and M.-C. Lu, Sep. Purif. Technol., 191, 233 (2018); https://doi.org/10.1016/j.seppur.2017.09.027
R.R. Mathiarasu, A. Manikandan, J.N. Baby, K. Panneerselvam, R. Subashchandrabose, M. George, Y. Slimani, M.A. Almessiere and A. Baykal, Physica B, 615, 413068 (2021); https://doi.org/10.1016/j.physb.2021.413068
P. Pongwan, K. Wetchakun, S. Phanichphant and N. Wetchakun, Res. Chem. Intermed., 42, 2815 (2016); https://doi.org/10.1007/s11164-015-2179-y
A.A. Kashale, P.K. Dwivedi, B.R. Sathe, M.V. Shelke, J.Y. Chang and A.V. Ghule, ACS Omega, 3, 13676 (2018); https://doi.org/10.1021/acsomega.8b01903
R. Rehman, Waheed-Uz-Zaman, A. Raza, W. Noor, A. Batool and H. Maryem, J. Chem., 2021, 6655070 (2021); https://doi.org/10.1155/2021/6655070
C. Tang and V. Chen, Water Res., 38, 2775 (2004); https://doi.org/10.1016/j.watres.2004.03.020
K.M. Reza, A. Kurny and F. Gulshan, Appl. Water Sci., 7, 1569 (2017); https://doi.org/10.1007/s13201-015-0367-y
R.R. Mathiarasu, A. Manikandan, K. Panneerselvam, M. George, K.K. Raja, M.A. Almessiere, Y. Slimani, A. Baykal, A.M. Asiri, T. Kamal and A. Khan, J. Mater. Res. Technol., 15, 5936 (2021); https://doi.org/10.1016/j.jmrt.2021.11.047