Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetic and Thermodynamic Analysis of Pyrolysis of Coconut Wood Residue
Corresponding Author(s) : V. Sivasubramanian
Asian Journal of Chemistry,
Vol. 35 No. 1 (2023): Vol 35 Issue 1
Abstract
Physico-chemical properties, kinetics and thermodynamic analysis of biomass are important in designing an efficient pyrolysis process. The current study aims to investigate the physico-chemical behaviour, calorific value and kinetics of thermal decomposition of coconut wood (Cocos nucifera) at 10, 15, and 25 ºC/min using the thermogravimetric analysis (TGA) technique in nitrogen atmospheres. Kinetic parameters were estimated using the Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO), Staring, Tang, Friedman and Coats-Redfern (CR) methods. Average activation energy estimated from Kissinger-Akahira-Sunose (KAS), Starink, Tang and Coats-Redfern (CR) methods was ≈ 100 kJ/mol. The Flynn-Wall-Ozawa (FWO) method predicted a higher value of 104 kJ/mol and Friedman a lower value of 81 kJ/mol. Thermodynamic parameters like change in enthalpy, Gibbs free energy and entropy have also been evaluated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Ali, M. Ashraf, K. Shahzad, M. Saleem and A. Chughtai, Energy Sources A Recov. Util. Environ. Effects, (2019); https://doi.org/10.1080/15567036.2019.1694105
- G.Y. Obeng, D.Y. Amoah, R. Opoku, C.K.K. Sekyere, E.A. Adjei and E. Mensah, Energies, 13, 2178 (2020); https://doi.org/10.3390/en13092178
- A. Bhavanam and R.C. Sastry, Bioresour. Technol., 178, 126 (2015); https://doi.org/10.1016/j.biortech.2014.10.028
- C. Yao, H. Tian, Z. Hu, Y. Yin, D. Chen and X. Yan, Korean J. Chem. Eng., 35, 511 (2018); https://doi.org/10.1007/s11814-017-0298-4
- J. Zhang, B. Huang, L. Chen, J. Du, W. Li and Z. Luo, Braz. J. Chem. Eng., 35, 1039 (2018). dx.doi.org/10.1590/0104-6632.20180353s20170382
- G.K. Gupta and M.K. Mondal, J. Therm. Anal. Calorim., 137, 1431 (2019); https://doi.org/10.1007/s10973-019-08053-7
- V. Dhyani, J. Kumar and T. Bhaskar, Bioresour. Technol., 245, 1122 (2017); https://doi.org/10.1016/j.biortech.2017.08.189
- Z. Ma, D. Chen, J. Gu, B. Bao and Q. Zhang, Energy Convers. Manage., 89, 251 (2015); https://doi.org/10.1016/j.enconman.2014.09.074
- R. Kaur, P. Gera, M.K. Jha and T. Bhaskar, Bioresour. Technol., 250, 422 (2018); https://doi.org/10.1016/j.biortech.2017.11.077
- J.C.G. da Silva, J.L.F. Alves, W.V. de Araujo Galdino, R.F. de Sena and S.L.F. Andersen, Energy Ecol. Environ., 4, 125 (2019); https://doi.org/10.1007/s40974-019-00120-x
- I.M. Rajendra, I.N.S. Winaya, A. Ghurri and I.K.G. Wirawan, IOP Conf. Series: Mater. Sci. Eng., 539, 012017 (2019); https://doi.org/10.1088/1757-899X/539/1/012017
- M. Said, G. John, C. Mhilu and S. Manyele, J. Renew. Energy, 2015, Article ID 307329 (2015); https://doi.org/10.1155/2015/307329
- D. Hungwe, S. Ullah, P. Kilpelainen, S. Theppitak, L. Ding and F. Takahashi, Biomass Bioenergy, 152, 106194 (2021); https://doi.org/10.1016/j.biombioe.2021.106194
- R.K. Singh, T. Patil and A.N. Sawarkar, Bioresour. Technol. Rep., 12, 100558 (2020); https://doi.org/10.1016/j.biteb.2020.100558
- M. Kumar, S.K. Shukla, S.N. Upadhyay and P.K. Mishra, Bioresour. Technol., 310, 123393 (2020); https://doi.org/10.1016/j.biortech.2020.123393
- F.C.R. Lopes, K. Tannous and E.B. Carmazini, Thermochim. Acta, 715, 179275 (2022); https://doi.org/10.1016/j.tca.2022.179275
- R.K. Mishra and K. Mohanty, J. Anal. Appl. Pyrolysis, 134, 83 (2018); https://doi.org/10.1016/j.jaap.2018.05.013
- M. Hu, Z. Chen, S. Wang, D. Guo, C. Ma, Y. Zhou, J. Chen, M. Laghari, S. Fazal, B. Xiao, B. Zhang and S. Ma, Energy Convers. Manage., 118, 1 (2016); https://doi.org/10.1016/j.enconman.2016.03.058
- A.K. Varma, S. Singh, A.K. Rathore, L.S. Thakur, R. Shankar and P. Mondal, Biomass Convers. Biorefin., 12, 4877 (2020); https://doi.org/10.1007/s13399-020-00972-y
- J.L.F. Alves, J.C.G. da Silva, G.D. Mumbach, R.F. de Sena, R.A.F. Machado and C. Marangoni, Renew. Energy, 181, 207 (2022); https://doi.org/10.1016/j.renene.2021.09.053
- H. Siddiqi, M. Bal, U. Kumari and B.C. Meikap, Renew. Energy, 148, 756 (2020); https://doi.org/10.1016/j.renene.2019.10.162
References
N. Ali, M. Ashraf, K. Shahzad, M. Saleem and A. Chughtai, Energy Sources A Recov. Util. Environ. Effects, (2019); https://doi.org/10.1080/15567036.2019.1694105
G.Y. Obeng, D.Y. Amoah, R. Opoku, C.K.K. Sekyere, E.A. Adjei and E. Mensah, Energies, 13, 2178 (2020); https://doi.org/10.3390/en13092178
A. Bhavanam and R.C. Sastry, Bioresour. Technol., 178, 126 (2015); https://doi.org/10.1016/j.biortech.2014.10.028
C. Yao, H. Tian, Z. Hu, Y. Yin, D. Chen and X. Yan, Korean J. Chem. Eng., 35, 511 (2018); https://doi.org/10.1007/s11814-017-0298-4
J. Zhang, B. Huang, L. Chen, J. Du, W. Li and Z. Luo, Braz. J. Chem. Eng., 35, 1039 (2018). dx.doi.org/10.1590/0104-6632.20180353s20170382
G.K. Gupta and M.K. Mondal, J. Therm. Anal. Calorim., 137, 1431 (2019); https://doi.org/10.1007/s10973-019-08053-7
V. Dhyani, J. Kumar and T. Bhaskar, Bioresour. Technol., 245, 1122 (2017); https://doi.org/10.1016/j.biortech.2017.08.189
Z. Ma, D. Chen, J. Gu, B. Bao and Q. Zhang, Energy Convers. Manage., 89, 251 (2015); https://doi.org/10.1016/j.enconman.2014.09.074
R. Kaur, P. Gera, M.K. Jha and T. Bhaskar, Bioresour. Technol., 250, 422 (2018); https://doi.org/10.1016/j.biortech.2017.11.077
J.C.G. da Silva, J.L.F. Alves, W.V. de Araujo Galdino, R.F. de Sena and S.L.F. Andersen, Energy Ecol. Environ., 4, 125 (2019); https://doi.org/10.1007/s40974-019-00120-x
I.M. Rajendra, I.N.S. Winaya, A. Ghurri and I.K.G. Wirawan, IOP Conf. Series: Mater. Sci. Eng., 539, 012017 (2019); https://doi.org/10.1088/1757-899X/539/1/012017
M. Said, G. John, C. Mhilu and S. Manyele, J. Renew. Energy, 2015, Article ID 307329 (2015); https://doi.org/10.1155/2015/307329
D. Hungwe, S. Ullah, P. Kilpelainen, S. Theppitak, L. Ding and F. Takahashi, Biomass Bioenergy, 152, 106194 (2021); https://doi.org/10.1016/j.biombioe.2021.106194
R.K. Singh, T. Patil and A.N. Sawarkar, Bioresour. Technol. Rep., 12, 100558 (2020); https://doi.org/10.1016/j.biteb.2020.100558
M. Kumar, S.K. Shukla, S.N. Upadhyay and P.K. Mishra, Bioresour. Technol., 310, 123393 (2020); https://doi.org/10.1016/j.biortech.2020.123393
F.C.R. Lopes, K. Tannous and E.B. Carmazini, Thermochim. Acta, 715, 179275 (2022); https://doi.org/10.1016/j.tca.2022.179275
R.K. Mishra and K. Mohanty, J. Anal. Appl. Pyrolysis, 134, 83 (2018); https://doi.org/10.1016/j.jaap.2018.05.013
M. Hu, Z. Chen, S. Wang, D. Guo, C. Ma, Y. Zhou, J. Chen, M. Laghari, S. Fazal, B. Xiao, B. Zhang and S. Ma, Energy Convers. Manage., 118, 1 (2016); https://doi.org/10.1016/j.enconman.2016.03.058
A.K. Varma, S. Singh, A.K. Rathore, L.S. Thakur, R. Shankar and P. Mondal, Biomass Convers. Biorefin., 12, 4877 (2020); https://doi.org/10.1007/s13399-020-00972-y
J.L.F. Alves, J.C.G. da Silva, G.D. Mumbach, R.F. de Sena, R.A.F. Machado and C. Marangoni, Renew. Energy, 181, 207 (2022); https://doi.org/10.1016/j.renene.2021.09.053
H. Siddiqi, M. Bal, U. Kumari and B.C. Meikap, Renew. Energy, 148, 756 (2020); https://doi.org/10.1016/j.renene.2019.10.162