Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Mass Spectrometric Analysis of PM2.5 Aerosol Samples
Asian Journal of Chemistry,
Vol. 30 No. 8 (2018): Vol 30 Issue 8
Abstract
At the present time mass-spectrometric analysis widely used in atmospheric researches. Mass spectrometry provides with high probability to observe the content of many organic compounds in atmospheric aerosol samples. Due to anthropogenic pollution, the particulate matters are one of the major and dangerous air components. Detrimental effect on human health as a consequence of the presence in their composition carcinogens and mutagens. This study includes the analysis of chemical composition of atmospheric aerosol in the range of 2.5 pm and less. HRMS ESI method was used for the samples, collected throughout all year round. EPA US separated 16 polycyclic aromatic hydrocarbons from others to show potentially high risk of carcinogenic activity. The main goal of this work was to focus our research in search of these compounds in urban air of St. Petersburg city of Russia.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- University of Utah, Atmospheric Sciences Department, Mountain Meteorology Group, Frequently asked Questions about Wintertime PM2.5 Pollution in Utah’s Salt Lake Valley, 2017; http://home.chpc.utah.edu/~whiteman/PM2.5/PM2.5.html
- D. Hu, Q. Bian, A.K.H. Lau and J.Z. Yu, J. Geophys. Res., 115, D16204 (2010); https://doi.org/10.1029/2009JD012498.
- F. Yang, J. Brook, K. He, F. Duan and Y. Ma, Adv. Atmos. Sci., 27, 705 (2010); https://doi.org/10.1007/s00376-009-9103-6.
- J.O. Anderson, J.G. Thundiyil and A. Stolbach, J. Med. Toxicol., 8, 166 (2012); https://doi.org/10.1007/s13181-011-0203-1.
- E.J. Highwood and R.P. Kinnersley, Environ. Int., 32, 560 (2006); https://doi.org/10.1016/j.envint.2005.12.003.
- European Environment Agency, Status of Black Carbon Monitoring in Ambient Air in Europe, Technical Report No. 18/2013;
- Online report: Fine particulate matter (PM2.5) in the UK (2012). https://www.gov.uk/government/publications/fine-particulate-matterpm2-5-in-the-uk.
- United States Environmental Protection Agency, publication No. EPA456/R-03-002, June 2003 Information Transfer Group-AIRNow Program (E143-03)EPA-456/R-03-002www.epa.gov/airnow; https://www3.epa.gov/airnow/aq_forecasting_guidance-1016.pdf.
- E.C.H. Wan and J.Z. Yu, J. Chromatogr. A, 1107, 175 (2006); https://doi.org/10.1016/j.chroma.2005.12.062.
- A.S. Willoughby, A.S. Wozniak and P.G. Hatcher, Atmosphere, 7, 79 (2016); https://doi.org/10.3390/atmos7060079.
- Minnesota Department of Health, Report: Guidance for Evaluating the Cancer Potency of Polycyclic Aromatic Hydrocarbon (PAH) Mixtures in Environmental Samples (2016). http://www.health.state.mn.us/divs/eh/risk/guidance/pahguidance.pdf.
- U.S. Department of Health and Human Services, 14th Report on Carcinogens (2016). https://ntp.niehs.nih.gov/pubhealth/roc/index-1.html.
- E. Dybing, P.E. Schwarze, P. Nafstad, K. Victorin and T.M. Penning, International Agency for Research on Cancer, IARC Scientific Publications No. 161. WHO Press, Geneva, pp. 75-94 (2013).
- V. Evagelopoulos, T.A. Albanis, A. Asvesta and S. Zoras, Glob. NEST J., 12, 63 (2010).
- L.-Y. He, M. Hu, X.-F. Huang, B.-D. Yu, Y.-H. Zhang and D.-Q. Liu, Atmos. Environ., 38, 6557 (2004); https://doi.org/10.1016/j.atmosenv.2004.08.034.
- H. Chen, M. Li, Y.-P. Zhang, X. Yang, J.-J. Lian and J.-M. Chen, J. Am. Soc. Mass Spectrom., 19, 450 (2008); https://doi.org/10.1016/j.jasms.2007.11.020.
- M. Frenklach, eds.: ed. H. Jander and H.Gg. Wagner, Soot Formation in Combustion: An International Round Table Discussion, Vandenhoeck & Ruprecht, Gottingen, Germany, p. 162 (1990).
- B. Apicella, A. Carpentieri, M. Alfe, R. Barbella, A. Tregrossi, P. Pucci and A. Ciajolo, Proc. Combust. Inst., 31, 547 (2007); https://doi.org/10.1016/j.proci.2006.08.014.
- A. Tregrossi, A. Ciajolo and R. Barbella, Combust. Flame, 117, 553 (1999); https://doi.org/10.1016/S0010-2180(98)00157-6.
- S. Utsunomiya, K.A. Jensen, G.J. Keeler and R.C. Ewing, Environ. Sci. Technol., 36 (23), 4943 (2002); https://doi.org/10.1021/es025872a.
- J. Wang, T.B. Onasch, X. Ge, S. Collier, Q. Zhang, Y. Sun, H. Yu, M. Chen, A.S.H. Prévot and D.R. Worsnop, Environ. Sci. Technol. Lett., 3, 121 (2016); https://doi.org/10.1021/acs.estlett.6b00044.
- J.J. Bang, P.A. Guerrero, D.A. Lopez, L.E. Murr and E.V. Esquivel, J. Nanosci. Nanotechnol., 4, 716 (2004); https://doi.org/10.1166/jnn.2004.095.
- L.E. Murr and K.F. Soto, Mater. Charact., 55, 50 (2005); https://doi.org/10.1016/j.matchar.2005.02.008.
- C.D. Lagally, C.C.O. Reynolds, A.P. Grieshop, M. Kandlikar and S.N. Rogak, Aerosol Sci. Technol., 46, 156 (2012); https://doi.org/10.1080/02786826.2011.617399.
- T. Benn, P. Herckes and P. Westerhoff, Compreh. Anal. Chem., 59, 291 (2012); https://doi.org/10.1016/B978-0-444-56328-6.00010-4.
- A. Kiendler and F. Arnold, Atmos. Environ., 36, 2979 (2002); https://doi.org/10.1016/S1352-2310(02)00241-8.
- D. Heymann, L.P.F. Chibante, R.R. Brooks, W.S. Wolbach and R.E. Smalley, Science, 265, 645 (1994); https://doi.org/10.1126/science.265.5172.645.
- P.T.A. Reilly, R.A. Gieray, W.B. Whitten and J.M. Ramsey, J. Am. Chem. Soc., 122, 11596 (2000); https://doi.org/10.1021/ja003521v.
- A.J. Tiwari, J.R. Morris, E.P. Vejerano, M.F. Hochella Jr. and L.C. Marr, Environ. Sci. Technol., 48, 2706 (2014); https://doi.org/10.1021/es4045693
References
University of Utah, Atmospheric Sciences Department, Mountain Meteorology Group, Frequently asked Questions about Wintertime PM2.5 Pollution in Utah’s Salt Lake Valley, 2017; http://home.chpc.utah.edu/~whiteman/PM2.5/PM2.5.html
D. Hu, Q. Bian, A.K.H. Lau and J.Z. Yu, J. Geophys. Res., 115, D16204 (2010); https://doi.org/10.1029/2009JD012498.
F. Yang, J. Brook, K. He, F. Duan and Y. Ma, Adv. Atmos. Sci., 27, 705 (2010); https://doi.org/10.1007/s00376-009-9103-6.
J.O. Anderson, J.G. Thundiyil and A. Stolbach, J. Med. Toxicol., 8, 166 (2012); https://doi.org/10.1007/s13181-011-0203-1.
E.J. Highwood and R.P. Kinnersley, Environ. Int., 32, 560 (2006); https://doi.org/10.1016/j.envint.2005.12.003.
European Environment Agency, Status of Black Carbon Monitoring in Ambient Air in Europe, Technical Report No. 18/2013;
Online report: Fine particulate matter (PM2.5) in the UK (2012). https://www.gov.uk/government/publications/fine-particulate-matterpm2-5-in-the-uk.
United States Environmental Protection Agency, publication No. EPA456/R-03-002, June 2003 Information Transfer Group-AIRNow Program (E143-03)EPA-456/R-03-002www.epa.gov/airnow; https://www3.epa.gov/airnow/aq_forecasting_guidance-1016.pdf.
E.C.H. Wan and J.Z. Yu, J. Chromatogr. A, 1107, 175 (2006); https://doi.org/10.1016/j.chroma.2005.12.062.
A.S. Willoughby, A.S. Wozniak and P.G. Hatcher, Atmosphere, 7, 79 (2016); https://doi.org/10.3390/atmos7060079.
Minnesota Department of Health, Report: Guidance for Evaluating the Cancer Potency of Polycyclic Aromatic Hydrocarbon (PAH) Mixtures in Environmental Samples (2016). http://www.health.state.mn.us/divs/eh/risk/guidance/pahguidance.pdf.
U.S. Department of Health and Human Services, 14th Report on Carcinogens (2016). https://ntp.niehs.nih.gov/pubhealth/roc/index-1.html.
E. Dybing, P.E. Schwarze, P. Nafstad, K. Victorin and T.M. Penning, International Agency for Research on Cancer, IARC Scientific Publications No. 161. WHO Press, Geneva, pp. 75-94 (2013).
V. Evagelopoulos, T.A. Albanis, A. Asvesta and S. Zoras, Glob. NEST J., 12, 63 (2010).
L.-Y. He, M. Hu, X.-F. Huang, B.-D. Yu, Y.-H. Zhang and D.-Q. Liu, Atmos. Environ., 38, 6557 (2004); https://doi.org/10.1016/j.atmosenv.2004.08.034.
H. Chen, M. Li, Y.-P. Zhang, X. Yang, J.-J. Lian and J.-M. Chen, J. Am. Soc. Mass Spectrom., 19, 450 (2008); https://doi.org/10.1016/j.jasms.2007.11.020.
M. Frenklach, eds.: ed. H. Jander and H.Gg. Wagner, Soot Formation in Combustion: An International Round Table Discussion, Vandenhoeck & Ruprecht, Gottingen, Germany, p. 162 (1990).
B. Apicella, A. Carpentieri, M. Alfe, R. Barbella, A. Tregrossi, P. Pucci and A. Ciajolo, Proc. Combust. Inst., 31, 547 (2007); https://doi.org/10.1016/j.proci.2006.08.014.
A. Tregrossi, A. Ciajolo and R. Barbella, Combust. Flame, 117, 553 (1999); https://doi.org/10.1016/S0010-2180(98)00157-6.
S. Utsunomiya, K.A. Jensen, G.J. Keeler and R.C. Ewing, Environ. Sci. Technol., 36 (23), 4943 (2002); https://doi.org/10.1021/es025872a.
J. Wang, T.B. Onasch, X. Ge, S. Collier, Q. Zhang, Y. Sun, H. Yu, M. Chen, A.S.H. Prévot and D.R. Worsnop, Environ. Sci. Technol. Lett., 3, 121 (2016); https://doi.org/10.1021/acs.estlett.6b00044.
J.J. Bang, P.A. Guerrero, D.A. Lopez, L.E. Murr and E.V. Esquivel, J. Nanosci. Nanotechnol., 4, 716 (2004); https://doi.org/10.1166/jnn.2004.095.
L.E. Murr and K.F. Soto, Mater. Charact., 55, 50 (2005); https://doi.org/10.1016/j.matchar.2005.02.008.
C.D. Lagally, C.C.O. Reynolds, A.P. Grieshop, M. Kandlikar and S.N. Rogak, Aerosol Sci. Technol., 46, 156 (2012); https://doi.org/10.1080/02786826.2011.617399.
T. Benn, P. Herckes and P. Westerhoff, Compreh. Anal. Chem., 59, 291 (2012); https://doi.org/10.1016/B978-0-444-56328-6.00010-4.
A. Kiendler and F. Arnold, Atmos. Environ., 36, 2979 (2002); https://doi.org/10.1016/S1352-2310(02)00241-8.
D. Heymann, L.P.F. Chibante, R.R. Brooks, W.S. Wolbach and R.E. Smalley, Science, 265, 645 (1994); https://doi.org/10.1126/science.265.5172.645.
P.T.A. Reilly, R.A. Gieray, W.B. Whitten and J.M. Ramsey, J. Am. Chem. Soc., 122, 11596 (2000); https://doi.org/10.1021/ja003521v.
A.J. Tiwari, J.R. Morris, E.P. Vejerano, M.F. Hochella Jr. and L.C. Marr, Environ. Sci. Technol., 48, 2706 (2014); https://doi.org/10.1021/es4045693