Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Thermally Stable and Processable Organic-Inorganic Hybrid Material
Asian Journal of Chemistry,
Vol. 30 No. 8 (2018): Vol 30 Issue 8
Abstract
This article presents a simple and facile method to produce thermoresponsive organic-inorganic hybrid materials. They are prepared by fine-tuning the synthetic protocol for coupling N-isopropyl acrylamide, maleic anhydride and aminopropyl triethoxy silane through sol-gel technique in the absence of externally added acid or base catalyst. The spectroscopic and microscopic characterization follows standard procedures. The formation of highly porous inorganic nanodomains as a function of feed ratio is explained with the support of microscopic studies. The thermal stability and crystallinity studies are also done to propose for drug delivery or specific insulator applications. The dielectric property of this hybrid material is compared with similar materials for commercial applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Mammeri, E.L. Bourhis, L. Rozes and C. Sanchez, J. Mater. Chem., 15, 3787 (2005); https://doi.org/10.1039/b507309j.
- M. Okamoto, Mater. Sci. Technol., 22, 756 (2006); https://doi.org/10.1179/174328406X101319.
- D.A. Koleva, N. Boshkov, V. Bachvarov, H. Zhan, J.H.W. de Wit and K. van Breugel, Surf. Coat. Technol., 204, 3760 (2010); https://doi.org/10.1016/j.surfcoat.2010.04.043.
- M.A. Ver Meer, B. Narasimhan, B.H. Shanks and S.K. Mallapragada, ACS Appl. Mater. Interfaces, 2, 41 (2010); https://doi.org/10.1021/am900540x.
- G.L. Li, Z. Zheng, H. Mo¨hwald and D.G. Shchukin, ACS Nano, 7, 2470 (2013); https://doi.org/10.1021/nn305814q.
- J. Chen, M. Liu, C. Chen, H. Gong and C. Gao, Appl. Mater. Interf., 3, 3215 (2011); https://doi.org/10.1021/am2007189.
- C. Wang, J. Wang, W. Gao, J.Q. Jiao, H.J. Feng, X. Liu and L. Chen, J. Colloid Interface Sci., 343, 141 (2010); https://doi.org/10.1016/j.jcis.2009.11.005.
- K. Zhang, J. Ma, B. Zhang, Sh. Zhao, Y.P. Li, Y.X. Xu, W. Yu and J. Wang, Mater. Lett., 61, 949 (2007); https://doi.org/10.1016/j.matlet.2006.06.021.
- P. Liu, W. Liu and Q. Xue, Mater. Chem. Phys., 87, 109 (2004); https://doi.org/10.1016/j.matchemphys.2004.05.001.
- M. Heskins and J.E. Guillet,, J. Macromol. Sci. Chem., A2, 1441 (1968); https://doi.org/10.1080/10601326808051910.
- R. Pelton, J. Colloid Interface Sci., 348, 673 (2010); https://doi.org/10.1016/j.jcis.2010.05.034.
- J.H. Park, Y.H. Lee and S.G. Oh, Macromol. Chem. Phys., 208, 2419 (2007); https://doi.org/10.1002/macp.200700247.
- J. Robertson, Eur. Phys. J. Appl. Phys., 28, 265 (2004); https://doi.org/10.1051/epjap:2004206.
- F. Hoffmann, M. Cornelius, J. Morell and M. Froba, Angew. Chem. Int. Ed., 45, 3216 (2006); https://doi.org/10.1002/anie.200503075.
- B. Luo, X. Wang, E. Tian, H. Gong, Q. Zhao, Z. Shen, Y. Xu, X. Xiao and L. Li, ACS Appl. Mater. Interfaces, 8, 3340 (2016); https://doi.org/10.1021/acsami.5b11231.
- T. Zhou, J.W. Zha, Y. Hou, D. Wang, J. Zhao and Z.M. Dang, ACS Appl. Mater. Interfaces, 3, 4557 (2011); https://doi.org/10.1021/am201454e.
- Z.Y. Zhou, S.M. Zhu and D. Zhang, J. Mater. Chem., 17, 2428 (2007); https://doi.org/10.1039/b618834f.
- Q. Fu, G.V. Rama Rao, T.L. Ward, Y. Lu and G.P. Lopez, Langmuir, 23, 170 (2007); https://doi.org/10.1021/la062770f.
- K. Manivannan, C.C. Cheng and J.K. Chen, Electroanalysis, 29, 1443 (2017); https://doi.org/10.1002/elan.201600755.
- H. Byun, J. Hu, P. Pakawanit, L. Srisombat and J.-H. Kim, Nanotechnology, 28, 025601 (2017); https://doi.org/10.1088/0957-4484/28/2/025601.
- Y.-G. Lee, C.-Y. Park, K.-H. Song, S.-S. Kim and S.-G. Oh, J. Ind. Eng. Chem., 18, 744 (2012) https://doi.org/10.1016/j.jiec.2011.11.117.
- Y.Z. You, K.K. Kalebaila, S.L. Brock and D. Oupicky, Chem. Mater., 20, 3354 (2008); https://doi.org/10.1021/cm703363w.
- S.A. Jadhav, I. Miletto, V. Brunella, G. Berlier and D. Scalarone, Polym. Adv. Technol., 26, 1070 (2015); https://doi.org/10.1002/pat.3534.
- H. Kesim, Z.M.O. Rzaev, S. Dincer and E. Piskin, Polymer, 44, 2897 (2003); https://doi.org/10.1016/S0032-3861(03)00177-0.
- R. Francis, C.P. Jijil, C.A. Prabhu and C.H. Suresh, Polymer, 48, 6707 (2007); https://doi.org/10.1016/j.polymer.2007.08.061.
- W. Zhou, J. Hua, D. Kun, Y. Qiu and Y. Wei, J. Polym. Sci.: Polym. Chem., 36, 1607 (1998); https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1607::AID-POLA13>3.0.CO;2-K.
- B.-S. Tian and C. Yang, J. Phys. Chem. C, 113, 4925 (2009); https://doi.org/10.1021/jp808534q.
- J. Wang, X. Lu, N. Huang, H. Zhang, R. Li and W. Li, Mater. Sci. Eng. B, 224, 1 (2017); https://doi.org/10.1016/j.mseb.2017.07.003.
- P. Banet, P. Griesmar, S. Serfaty, F. Vidal, V. Jaouen and J.-Y. Le Huerou, J. Phys. Chem. B, 113, 14914 (2009); https://doi.org/10.1021/jp906229n.
- A. Alli and B. Hazer, Eur. Polym. J., 44, 1701 (2008); https://doi.org/10.1016/j.eurpolymj.2008.04.004.
- J.J. Park, Trans. Electr. Electron. Mater., 13, 322 (2012); https://doi.org/10.4313/TEEM.2012.13.6.322.
- S. Babanzadeh, S. Mehdipour-Ataei and A.R. Mahjoub, Des. Monomers Polym., 16, 417 (2013); https://doi.org/10.1080/15685551.2012.747159.
- M.D. Morales-Acosta, M.A. Quevedo-Lopez, B.E. Gnade and R. RamirezBon, J. Sol-Gel Sci. Technol., 58, 218 (2011); https://doi.org/10.1007/s10971-010-2380-9.
- G. Hou, B. Cheng, F. Ding, M. Yao, Y. Cao, P. Hu, R. Ma and F. Yuan, RSC Adv., 5, 9432 (2015); https://doi.org/10.1039/C4RA14212H.
- M. Shahbazi, A. Bahari and S. Ghasemi, Org. Electron., 32, 100 (2016); https://doi.org/10.1016/j.orgel.2016.02.012.
References
F. Mammeri, E.L. Bourhis, L. Rozes and C. Sanchez, J. Mater. Chem., 15, 3787 (2005); https://doi.org/10.1039/b507309j.
M. Okamoto, Mater. Sci. Technol., 22, 756 (2006); https://doi.org/10.1179/174328406X101319.
D.A. Koleva, N. Boshkov, V. Bachvarov, H. Zhan, J.H.W. de Wit and K. van Breugel, Surf. Coat. Technol., 204, 3760 (2010); https://doi.org/10.1016/j.surfcoat.2010.04.043.
M.A. Ver Meer, B. Narasimhan, B.H. Shanks and S.K. Mallapragada, ACS Appl. Mater. Interfaces, 2, 41 (2010); https://doi.org/10.1021/am900540x.
G.L. Li, Z. Zheng, H. Mo¨hwald and D.G. Shchukin, ACS Nano, 7, 2470 (2013); https://doi.org/10.1021/nn305814q.
J. Chen, M. Liu, C. Chen, H. Gong and C. Gao, Appl. Mater. Interf., 3, 3215 (2011); https://doi.org/10.1021/am2007189.
C. Wang, J. Wang, W. Gao, J.Q. Jiao, H.J. Feng, X. Liu and L. Chen, J. Colloid Interface Sci., 343, 141 (2010); https://doi.org/10.1016/j.jcis.2009.11.005.
K. Zhang, J. Ma, B. Zhang, Sh. Zhao, Y.P. Li, Y.X. Xu, W. Yu and J. Wang, Mater. Lett., 61, 949 (2007); https://doi.org/10.1016/j.matlet.2006.06.021.
P. Liu, W. Liu and Q. Xue, Mater. Chem. Phys., 87, 109 (2004); https://doi.org/10.1016/j.matchemphys.2004.05.001.
M. Heskins and J.E. Guillet,, J. Macromol. Sci. Chem., A2, 1441 (1968); https://doi.org/10.1080/10601326808051910.
R. Pelton, J. Colloid Interface Sci., 348, 673 (2010); https://doi.org/10.1016/j.jcis.2010.05.034.
J.H. Park, Y.H. Lee and S.G. Oh, Macromol. Chem. Phys., 208, 2419 (2007); https://doi.org/10.1002/macp.200700247.
J. Robertson, Eur. Phys. J. Appl. Phys., 28, 265 (2004); https://doi.org/10.1051/epjap:2004206.
F. Hoffmann, M. Cornelius, J. Morell and M. Froba, Angew. Chem. Int. Ed., 45, 3216 (2006); https://doi.org/10.1002/anie.200503075.
B. Luo, X. Wang, E. Tian, H. Gong, Q. Zhao, Z. Shen, Y. Xu, X. Xiao and L. Li, ACS Appl. Mater. Interfaces, 8, 3340 (2016); https://doi.org/10.1021/acsami.5b11231.
T. Zhou, J.W. Zha, Y. Hou, D. Wang, J. Zhao and Z.M. Dang, ACS Appl. Mater. Interfaces, 3, 4557 (2011); https://doi.org/10.1021/am201454e.
Z.Y. Zhou, S.M. Zhu and D. Zhang, J. Mater. Chem., 17, 2428 (2007); https://doi.org/10.1039/b618834f.
Q. Fu, G.V. Rama Rao, T.L. Ward, Y. Lu and G.P. Lopez, Langmuir, 23, 170 (2007); https://doi.org/10.1021/la062770f.
K. Manivannan, C.C. Cheng and J.K. Chen, Electroanalysis, 29, 1443 (2017); https://doi.org/10.1002/elan.201600755.
H. Byun, J. Hu, P. Pakawanit, L. Srisombat and J.-H. Kim, Nanotechnology, 28, 025601 (2017); https://doi.org/10.1088/0957-4484/28/2/025601.
Y.-G. Lee, C.-Y. Park, K.-H. Song, S.-S. Kim and S.-G. Oh, J. Ind. Eng. Chem., 18, 744 (2012) https://doi.org/10.1016/j.jiec.2011.11.117.
Y.Z. You, K.K. Kalebaila, S.L. Brock and D. Oupicky, Chem. Mater., 20, 3354 (2008); https://doi.org/10.1021/cm703363w.
S.A. Jadhav, I. Miletto, V. Brunella, G. Berlier and D. Scalarone, Polym. Adv. Technol., 26, 1070 (2015); https://doi.org/10.1002/pat.3534.
H. Kesim, Z.M.O. Rzaev, S. Dincer and E. Piskin, Polymer, 44, 2897 (2003); https://doi.org/10.1016/S0032-3861(03)00177-0.
R. Francis, C.P. Jijil, C.A. Prabhu and C.H. Suresh, Polymer, 48, 6707 (2007); https://doi.org/10.1016/j.polymer.2007.08.061.
W. Zhou, J. Hua, D. Kun, Y. Qiu and Y. Wei, J. Polym. Sci.: Polym. Chem., 36, 1607 (1998); https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1607::AID-POLA13>3.0.CO;2-K.
B.-S. Tian and C. Yang, J. Phys. Chem. C, 113, 4925 (2009); https://doi.org/10.1021/jp808534q.
J. Wang, X. Lu, N. Huang, H. Zhang, R. Li and W. Li, Mater. Sci. Eng. B, 224, 1 (2017); https://doi.org/10.1016/j.mseb.2017.07.003.
P. Banet, P. Griesmar, S. Serfaty, F. Vidal, V. Jaouen and J.-Y. Le Huerou, J. Phys. Chem. B, 113, 14914 (2009); https://doi.org/10.1021/jp906229n.
A. Alli and B. Hazer, Eur. Polym. J., 44, 1701 (2008); https://doi.org/10.1016/j.eurpolymj.2008.04.004.
J.J. Park, Trans. Electr. Electron. Mater., 13, 322 (2012); https://doi.org/10.4313/TEEM.2012.13.6.322.
S. Babanzadeh, S. Mehdipour-Ataei and A.R. Mahjoub, Des. Monomers Polym., 16, 417 (2013); https://doi.org/10.1080/15685551.2012.747159.
M.D. Morales-Acosta, M.A. Quevedo-Lopez, B.E. Gnade and R. RamirezBon, J. Sol-Gel Sci. Technol., 58, 218 (2011); https://doi.org/10.1007/s10971-010-2380-9.
G. Hou, B. Cheng, F. Ding, M. Yao, Y. Cao, P. Hu, R. Ma and F. Yuan, RSC Adv., 5, 9432 (2015); https://doi.org/10.1039/C4RA14212H.
M. Shahbazi, A. Bahari and S. Ghasemi, Org. Electron., 32, 100 (2016); https://doi.org/10.1016/j.orgel.2016.02.012.