Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Characterization of Activated Carbon Produced from Eriobotrya japonica Seed by Chemical Activation with ZnCl2
Asian Journal of Chemistry,
Vol. 30 No. 8 (2018): Vol 30 Issue 8
Abstract
This study reports the utilization of Eriobotrya japonica seed in activated carbon arranging by chemical activation with ZnCl2 agent and the effect of carbonization situations surface properties. The influences of diverse activation temperatures (500, 600, 700 °C) on the pore structure properties of activated carbons were discussed by using N2 adsorption/desorption isotherms, scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy and X-ray diffraction. The conclusions indicated that the carbonization temperature have favourable effect on Brunauer-Emmett-Teller (BET) surface field, aggregate pore volume. The highest Brunauer-Emmett-Teller surface area of activated carbon produced at 700 °C was 1079 m2/g, total pore volume was 0.52 cm3/g, carbonization time was 2 h and impregnation rate was 1/1. Eriobotrya japonica activated carbon (EJAC)-ZnCl2 can be considered as an ideal low-expense and eco-friendly adsorbent.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.P.S. Khalil, M. Jawaid, P. Firoozian, U. Rashid, A. Islam and H.M. Akil, J. Biobased Mater. Bioenergy, 7, 708 (2013); https://doi.org/10.1166/jbmb.2013.1379.
- D. Kalderis, D. Koutoulakis, P. Paraskeva, E. Diamadopoulos, E. Otal, J.O. Valle and C. Fernández-Pereira, Chem. Eng. J., 144, 42 (2008); https://doi.org/10.1016/j.cej.2008.01.007.
- O. Ioannidou and A. Zabaniotou, Renew. Sustain. Energy Rev., 11, 1966 (2007); https://doi.org/10.1016/j.rser.2006.03.013.
- P.T. Williams and A.R. Reed, Biomass Bioenergy, 30, 144 (2006); https://doi.org/10.1016/j.biombioe.2005.11.006.
- C. Saka, J. Anal. Appl. Pyrolysis, 95, 21 (2012); https://doi.org/10.1016/j.jaap.2011.12.020.
- Ö. Sahin and C. Saka, Bioresour. Technol., 136, 163 (2013); https://doi.org/10.1016/j.biortech.2013.02.074.
- H. Dolas, O. Sahin, C. Saka and H. Demir, Chem. Eng. J., 166, 191 (2011); https://doi.org/10.1016/j.cej.2010.10.061.
- M. Özdemir, T. Bolgaz, C. Saka and Ö. Sahin, J. Anal. Appl. Pyrolysis, 92, 171 (2011); https://doi.org/10.1016/j.jaap.2011.05.010.
- R.R. Bansode, J.N. Losso, W.E. Marshall, R.M. Rao and R.J. Portier, Bioresour. Technol., 90, 175 (2003); https://doi.org/10.1016/S0960-8524(03)00117-2.
- D. Savova, E. Apak, E. Ekinci, F. Yardim, N. Petrov, T. Budinova, M. Razvigorova and V. Minkova, Biomass Bioenergy, 21, 133 (2001); https://doi.org/10.1016/S0961-9534(01)00027-7.
- P.K. Malik, Dyes Pigments, 56, 239 (2003); https://doi.org/10.1016/S0143-7208(02)00159-6.
- A. Aygün, S. Yenisoy-Karakas and I. Duman, Micropor. Mesopor. Mater., 66, 189 (2003); https://doi.org/10.1016/j.micromeso.2003.08.028.
- A.A. Bagreev, A.P. Broshnik, V.V. Strelko and Y.A. Tarasenko, Russ. J. Appl. Chem., 74, 205 (2001); https://doi.org/10.1023/A:1012757730582.
- Z.Z. Chowdhury, S.B. Abd Hamid, R. Das, M.R. Hasan, S.M. Zain, K. Khalid and M.N. Uddin, BioResources, 8, 6523 (2013); https://doi.org/10.15376/biores.8.4.6523-6555.
- J. Guo and A.C. Lua, J. Therm. Anal. Calorim., 60, 417 (2000); https://doi.org/10.1023/A:1010137308378.
- S.G. Herawan, M.S. Hadi, M.R. Ayob and A. Putra, Sci. World J., Article ID 624865 (2013); https://doi.org/10.1155/2013/624865.
- J. Katesa, S. Junpirom and C. Tangsathitkulchai, Suranaree J. Sci. Technol., 20, 269 (2013).
- V. Sricharoenchaikul, C. Pechyen, D. Aht-ong and D. Atong, Energy Fuels, 22, 31 (2008); https://doi.org/10.1021/ef700285u.
- N. Mohamad Nor, L.C. Lau, K.T. Lee and A.R. Mohamed, J. Environ. Chem. Eng., 1, 658 (2013); https://doi.org/10.1016/j.jece.2013.09.017.
- M.A. Lillo-Ródenas, D. Cazorla-Amorós and A. Linares-Solano, Carbon, 41, 267 (2003); https://doi.org/10.1016/S0008-6223(02)00279-8.
- A. Sánchez-Sánchez, F. Suárez-García, A. Martínez-Alonso and J.M. Tascón, ACS Appl. Mater. Interfaces, 6, 21237 (2014); https://doi.org/10.1021/am506176e.
- Q. Qian, M. Machida and H. Tatsumoto, Bioresour. Technol., 98, 353 (2007); https://doi.org/10.1016/j.biortech.2005.12.023.
- Q. Lu, Z. Wang, C.Q. Dong, Z.F. Zhang, Y. Zhang, Y.P. Yang and X.F. Zhu, J. Anal. Appl. Pyrolysis, 91, 273 (2011); https://doi.org/10.1016/j.jaap.2011.03.002.
- X. Wang, D. Li, W. Li, J. Peng, H. Xia, L. Zhang, S. Guo and G. Chen, BioResources, 8, 6184 (2013).
- K.S.W. Sing, Pure Appl. Chem., 54, 2201 (1982); https://doi.org/10.1351/pac198254112201.
- H. Xiao, H. Peng, S. Deng, X. Yang, Y. Zhang and Y. Li, Bioresour. Technol., 111, 127 (2012); https://doi.org/10.1016/j.biortech.2012.02.054.
- W. Wang and D. Yuan, Sci. Rep., 4, 5711 (2015); https://doi.org/10.1038/srep05711.
- H. Deng, G. Li, H. Yang, J. Tang and J. Tang, Chem. Eng. J., 163, 373 (2010); https://doi.org/10.1016/j.cej.2010.08.019.
- A. Gundogdu, C. Duran, H.B. Senturk, M. Soylak, M. Imamoglu and Y. Onal, J. Anal. Appl. Pyrolysis, 104, 249 (2013); https://doi.org/10.1016/j.jaap.2013.07.008.
- V.O. Njoku, K.Y. Foo and B.H. Hameed, Chem. Eng. J., 215-216, 383 (2013); https://doi.org/10.1016/j.cej.2012.10.068.
- B.H. Hameed and F.B.M. Daud, Chem. Eng. J., 139, 48 (2008); https://doi.org/10.1016/j.cej.2007.07.089.
- D. Angin, Fuel, 115, 804 (2014); https://doi.org/10.1016/j.fuel.2013.04.060.
- A.C. Lua and T. Yang, J. Colloid Interface Sci., 290, 505 (2005); https://doi.org/10.1016/j.jcis.2005.04.063.
References
H.P.S. Khalil, M. Jawaid, P. Firoozian, U. Rashid, A. Islam and H.M. Akil, J. Biobased Mater. Bioenergy, 7, 708 (2013); https://doi.org/10.1166/jbmb.2013.1379.
D. Kalderis, D. Koutoulakis, P. Paraskeva, E. Diamadopoulos, E. Otal, J.O. Valle and C. Fernández-Pereira, Chem. Eng. J., 144, 42 (2008); https://doi.org/10.1016/j.cej.2008.01.007.
O. Ioannidou and A. Zabaniotou, Renew. Sustain. Energy Rev., 11, 1966 (2007); https://doi.org/10.1016/j.rser.2006.03.013.
P.T. Williams and A.R. Reed, Biomass Bioenergy, 30, 144 (2006); https://doi.org/10.1016/j.biombioe.2005.11.006.
C. Saka, J. Anal. Appl. Pyrolysis, 95, 21 (2012); https://doi.org/10.1016/j.jaap.2011.12.020.
Ö. Sahin and C. Saka, Bioresour. Technol., 136, 163 (2013); https://doi.org/10.1016/j.biortech.2013.02.074.
H. Dolas, O. Sahin, C. Saka and H. Demir, Chem. Eng. J., 166, 191 (2011); https://doi.org/10.1016/j.cej.2010.10.061.
M. Özdemir, T. Bolgaz, C. Saka and Ö. Sahin, J. Anal. Appl. Pyrolysis, 92, 171 (2011); https://doi.org/10.1016/j.jaap.2011.05.010.
R.R. Bansode, J.N. Losso, W.E. Marshall, R.M. Rao and R.J. Portier, Bioresour. Technol., 90, 175 (2003); https://doi.org/10.1016/S0960-8524(03)00117-2.
D. Savova, E. Apak, E. Ekinci, F. Yardim, N. Petrov, T. Budinova, M. Razvigorova and V. Minkova, Biomass Bioenergy, 21, 133 (2001); https://doi.org/10.1016/S0961-9534(01)00027-7.
P.K. Malik, Dyes Pigments, 56, 239 (2003); https://doi.org/10.1016/S0143-7208(02)00159-6.
A. Aygün, S. Yenisoy-Karakas and I. Duman, Micropor. Mesopor. Mater., 66, 189 (2003); https://doi.org/10.1016/j.micromeso.2003.08.028.
A.A. Bagreev, A.P. Broshnik, V.V. Strelko and Y.A. Tarasenko, Russ. J. Appl. Chem., 74, 205 (2001); https://doi.org/10.1023/A:1012757730582.
Z.Z. Chowdhury, S.B. Abd Hamid, R. Das, M.R. Hasan, S.M. Zain, K. Khalid and M.N. Uddin, BioResources, 8, 6523 (2013); https://doi.org/10.15376/biores.8.4.6523-6555.
J. Guo and A.C. Lua, J. Therm. Anal. Calorim., 60, 417 (2000); https://doi.org/10.1023/A:1010137308378.
S.G. Herawan, M.S. Hadi, M.R. Ayob and A. Putra, Sci. World J., Article ID 624865 (2013); https://doi.org/10.1155/2013/624865.
J. Katesa, S. Junpirom and C. Tangsathitkulchai, Suranaree J. Sci. Technol., 20, 269 (2013).
V. Sricharoenchaikul, C. Pechyen, D. Aht-ong and D. Atong, Energy Fuels, 22, 31 (2008); https://doi.org/10.1021/ef700285u.
N. Mohamad Nor, L.C. Lau, K.T. Lee and A.R. Mohamed, J. Environ. Chem. Eng., 1, 658 (2013); https://doi.org/10.1016/j.jece.2013.09.017.
M.A. Lillo-Ródenas, D. Cazorla-Amorós and A. Linares-Solano, Carbon, 41, 267 (2003); https://doi.org/10.1016/S0008-6223(02)00279-8.
A. Sánchez-Sánchez, F. Suárez-García, A. Martínez-Alonso and J.M. Tascón, ACS Appl. Mater. Interfaces, 6, 21237 (2014); https://doi.org/10.1021/am506176e.
Q. Qian, M. Machida and H. Tatsumoto, Bioresour. Technol., 98, 353 (2007); https://doi.org/10.1016/j.biortech.2005.12.023.
Q. Lu, Z. Wang, C.Q. Dong, Z.F. Zhang, Y. Zhang, Y.P. Yang and X.F. Zhu, J. Anal. Appl. Pyrolysis, 91, 273 (2011); https://doi.org/10.1016/j.jaap.2011.03.002.
X. Wang, D. Li, W. Li, J. Peng, H. Xia, L. Zhang, S. Guo and G. Chen, BioResources, 8, 6184 (2013).
K.S.W. Sing, Pure Appl. Chem., 54, 2201 (1982); https://doi.org/10.1351/pac198254112201.
H. Xiao, H. Peng, S. Deng, X. Yang, Y. Zhang and Y. Li, Bioresour. Technol., 111, 127 (2012); https://doi.org/10.1016/j.biortech.2012.02.054.
W. Wang and D. Yuan, Sci. Rep., 4, 5711 (2015); https://doi.org/10.1038/srep05711.
H. Deng, G. Li, H. Yang, J. Tang and J. Tang, Chem. Eng. J., 163, 373 (2010); https://doi.org/10.1016/j.cej.2010.08.019.
A. Gundogdu, C. Duran, H.B. Senturk, M. Soylak, M. Imamoglu and Y. Onal, J. Anal. Appl. Pyrolysis, 104, 249 (2013); https://doi.org/10.1016/j.jaap.2013.07.008.
V.O. Njoku, K.Y. Foo and B.H. Hameed, Chem. Eng. J., 215-216, 383 (2013); https://doi.org/10.1016/j.cej.2012.10.068.
B.H. Hameed and F.B.M. Daud, Chem. Eng. J., 139, 48 (2008); https://doi.org/10.1016/j.cej.2007.07.089.
D. Angin, Fuel, 115, 804 (2014); https://doi.org/10.1016/j.fuel.2013.04.060.
A.C. Lua and T. Yang, J. Colloid Interface Sci., 290, 505 (2005); https://doi.org/10.1016/j.jcis.2005.04.063.