Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Ternary CaNiAl-Layered Double Hydroxide as Potential Adsorbent for Congo Red Dye Removal in Aqueous Solution
Corresponding Author(s) : Hemaprobha Saikia
Asian Journal of Chemistry,
Vol. 34 No. 12 (2022): Vol 34 Issue 12, 2022
Abstract
A hierarchically porous ternary CaNiAl-LDH material was synthesized via a facile urea hydrolysis method and characterized by PXRD, FT-IR, BET, SEM and TGA techniques. The adsorption efficiency of synthesized ternary CaNiAl-layered double hydroxide was also examined using Congo red dye as a model pollutant. Material characteristics affirmed with the formation of circular and flower-like LDH particles with accessible mesopores of 3.85 nm and intermediate surface area of 58.45 m2/g. The synthesized ternary CaNiAl-LDH material exhibited the maximum adsorption capacity of 135.21 mg/g towards the targeted organic pollutant from an aqueous medium. The obtained results in isotherm and kinetic studies demonstrated that sorption of Congo red dye onto CaNiAl-LDH followed Langmuir isotherm and pseudo-second order model, respectively. In addition, the thermodynamic studies also suggested the endothermic and spontaneity of the sorption process. The reusability studies confirmed that CaNiAl-LDH can be reused up to fourth cycle. Therefore, the proposed material CaNiAl-LDH can be advocated as a highly effective low cost adsorbent for the treatment of water contaminants.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.-W. Li, H.-Q. Yu and B.E. Rittmann, Nature, 528, 29 (2015); https://doi.org/10.1038/528029a
- D. Iark, A.J.R. Buzzo, J.A.A. Garcia, V.G. Côrrea, C.V. Helm, R.C.G. Corrêa, R.A. Peralta, R.F. Peralta Muniz Moreira, A. Bracht and R.M. Peralta, Bioresour. Technol., 289, 121655 (2019); https://doi.org/10.1016/j.biortech.2019.121655
- S.S. Yang, J.H. Kang, T.R. Xie, D.F. Xing, N.Q. Ren, S.H. Ho and W.M. Wu, J. Clean. Prod., 227, 33 (2019); https://doi.org/10.1016/j.jclepro.2019.04.005
- A.B. Fradj, A. Boubakri, A. Hafiane and S.B. Hamouda, Results in Chemistry, 2, 100017 (2020); https://doi.org/10.1016/j.rechem.2019.100017
- C.Y. Teh, P.M. Budiman, K.P.Y. Shak and T.Y. Wu, Ind. Eng. Chem. Res., 55, 4363 (2016); https://doi.org/10.1021/acs.iecr.5b04703
- S. Venkatesh, K. Venkatesh and A.R. Quaff, J. Appl. Res. Technol., 15, 340 (2017); https://doi.org/10.1016/j.jart.2017.02.006
- S.Y. Lee, D. Kang, S. Jeong, H.T. Do and J.H. Kim, ACS Omega, 5, 4233 (2020); https://doi.org/10.1021/acsomega.9b04127
- A.K. Badawi, M. Abd Elkodous and G.A.M. Ali, RSC Adv., 11, 36528 (2021); https://doi.org/10.1039/D1RA06892J
- Y. Tanimoto and S.I. Noro, RSC Adv., 11, 23707 (2021); https://doi.org/10.1039/D1RA03348D
- R.A. El-Ghany Mansour, M.G. Simeda and A.A. Zaatout, RSC Adv., 11, 7851 (2021); https://doi.org/10.1039/D0RA08488C
- G.Ö. Kayan and A. Kayan, J. Polym. Environ., 29, 3477 (2021); https://doi.org/10.1007/s10924-021-02154-x
- S. Radoor, J. Karayil, A. Jayakumar, D. Nandi, J. Parameswaranpillai, J. Lee, J.M. Shivanna, R. Nithya and S. Siengchin, J. Polym. Environ., 30, 3279 (2022); https://doi.org/10.1007/s10924-022-02421-5
- P. Huang, J. Liu, F. Wei, Y. Zhu, X. Wang, C. Cao and W. Song, Mater. Chem. Front., 1, 1550 (2017); https://doi.org/10.1039/C7QM00079K
- M. Khorshidi, S. Asadpour, N. Sarmast and M. Dinari, J. Mol. Liq., 348, 118399 (2022); https://doi.org/10.1016/j.molliq.2021.118399
- M. Daud, A. Hai, F. Banat, M.B. Wazir, M. Habib, G. Bharath and M.A. Al-Harthi, J. Mol. Liq., 288, 110989 (2019); https://doi.org/10.1016/j.molliq.2019.110989
- L. Jafari Foruzin, Z. Rezvani and B. Habibi, Appl. Clay Sci., 188, 105511 (2020); https://doi.org/10.1016/j.clay.2020.105511
- G. Rathee, N. Singh and R. Chandra, ACS Omega, 5, 2368 (2020); https://doi.org/10.1021/acsomega.9b03785
- T.R.R. Timóteo, C.G. Melo, L.J.A. Danda, L.C.P.B.B. Silva, D.A.F. Fontes, P.C.D. Silva, C.S.B. Aguilera, L.P. Siqueira, L.A. Rolim and P.J. Rolim Neto, Appl. Clay Sci., 180, 105197 (2019); https://doi.org/10.1016/j.clay.2019.105197
- D. Bharali and R.C. Deka, J. Environ. Chem. Eng., 5, 2056 (2017); https://doi.org/10.1016/j.jece.2017.04.012
- S.S. Ravuru, A. Jana and S. De, J. Hazard. Mater., 373, 791 (2019); https://doi.org/10.1016/j.jhazmat.2019.03.122
- M.A. Iqbal, L. Sun and M. Fedel, SN Appl. Sci., 1, 1415 (2019); https://doi.org/10.1007/s42452-019-1474-4
- Z. Wang, L. Zhang, P. Fang, L. Wang and W. Wang, ACS Omega, 5, 21805 (2020); https://doi.org/10.1021/acsomega.0c02875
- H. Lv, H. Rao, Z. Liu, Z. Zhou, Y. Zhao, H. Wei and Z. Chen, J. Energy Storage, 52B, 104940 (2022); https://doi.org/10.1016/j.est.2022.104940
- I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004
- H. Freundlich, J. Phys. Chem., 57, 385 (1906).
- M.I. Temkin and V. Pyzhev, Acta Physiochimica URSS, 12, 327 (1940).
- M.K. Raman and G. Muthuraman, Asian J. Chem., 31, 1255 (2019); https://doi.org/10.14233/ajchem.2019.21772
- S. Lagergren, K. Sven. Vetensk. Akad. Handl., 24, 1 (1898).
- Y.S. Ho and G. Mckay, Chem. Eng. J., 70, 115 (1998); https://doi.org/10.1016/S0923-0467(98)00076-1
- W.J. Weber and J.C. Morris, J. Sanit. Eng. Div., 89, 31 (1963).
- J.R. Guarin, J.C. Moreno-Pirajan and L. Giraldo, J. Chem., 2018, 2124845 (2018); https://doi.org/10.1155/2018/2124845
- J.M. Jabar, Y.A. Odusote, K.A. Alabi and I.B. Ahmed, Appl. Water Sci., 10, 136 (2020); https://doi.org/10.1007/s13201-020-01221-3
- F.C. Wu, R.L. Tseng and R.S. Juang, Chem. Eng. J., 153, 1 (2009); https://doi.org/10.1016/j.cej.2009.04.042
- F.C. Wu, R.L. Tseng and R.S. Juang, Chem. Eng. J., 150, 366 (2009); https://doi.org/10.1016/j.cej.2009.01.014
- H.T.N. Thi, D.C. Nguyen, T.T. Nguyen, V.T. Tran, H.V. Nguyen, L.G. Bach, D.V.N. Vo, D.H. Nguyen, D.V. Thuan, S.T. Do and T.D. Nguyen, Key Eng. Mater., 814, 463 (2019); https://doi.org/10.4028/www.scientific.net/KEM.814.463
- D. Maiti, S. Mukhopadhyay and P.S. Devi, ACS Sustain. Chem. Eng., 5, 11255 (2017); https://doi.org/10.1021/acssuschemeng.7b01684
- K.L. Muedi, V. Masindi, J.P. Maree, N. Haneklaus and H.G. Brink, Nanomaterials, 12, 776 (2022); https://doi.org/10.3390/nano12050776
- A. Li, H. Deng, C. Ye and Y. Jiang, ACS Omega, 5, 15152 (2020); https://doi.org/10.1021/acsomega.0c01092
- B. Priyadarshini, T. Patra and T.R. Sahoo, J. Magnes. Alloys, 9, 478 (2021); https://doi.org/10.1016/j.jma.2020.09.004
- R. Lafi, K. Charradi, M.A. Djebbi, A.B. Haj Amara and A. Hafiane, Adv. Powder Technol., 27, 232 (2016); https://doi.org/10.1016/j.apt.2015.12.004
- J. Li, H. Yu, X. Zhang, R. Zhu and L. Yan, Front. Environ. Sci. Eng., 14, 52 (2020); https://doi.org/10.1007/s11783-020-1229-x
- H.A. Tabti, B. Medjahed, M. Boudinar, A. Kadeche, N. Bouchikhi, A. Ramdani, S. Taleb and M. Adjdir, Res. Chem. Intermed., 48, 2683 (2022); https://doi.org/10.1007/s11164-022-04722-9
- S. Chilukoti and T. Thangavel, Inorg. Chem. Commun., 100, 107 (2019); https://doi.org/10.1016/j.inoche.2018.12.027
- I.M. Ahmed and M.S. Gasser, Appl. Surf. Sci., 259, 650 (2012); https://doi.org/10.1016/j.apsusc.2012.07.092
- T. Taher, R. Putra, N. Rahayu Palapa and A. Lesbani, Chem. Phys. Lett., 777, 138712 (2021); https://doi.org/10.1016/j.cplett.2021.138712
- C. Suppaso, N. Pongkan, S. Intachai, M. Ogawa and N. Khaorapapong, Appl. Surf. Sci., 213, 106115 (2021); https://doi.org/10.1016/j.clay.2021.106115
- P. Chakraborty and R. Nagarajan, Appl. Surf. Sci., 118, 308 (2015); https://doi.org/10.1016/j.clay.2015.10.011
- J. Li, N. Zhang and D.H.L. Ng, J. Mater. Chem. A., 3, 21106 (2015); https://doi.org/10.1039/C5TA04497A
References
W.-W. Li, H.-Q. Yu and B.E. Rittmann, Nature, 528, 29 (2015); https://doi.org/10.1038/528029a
D. Iark, A.J.R. Buzzo, J.A.A. Garcia, V.G. Côrrea, C.V. Helm, R.C.G. Corrêa, R.A. Peralta, R.F. Peralta Muniz Moreira, A. Bracht and R.M. Peralta, Bioresour. Technol., 289, 121655 (2019); https://doi.org/10.1016/j.biortech.2019.121655
S.S. Yang, J.H. Kang, T.R. Xie, D.F. Xing, N.Q. Ren, S.H. Ho and W.M. Wu, J. Clean. Prod., 227, 33 (2019); https://doi.org/10.1016/j.jclepro.2019.04.005
A.B. Fradj, A. Boubakri, A. Hafiane and S.B. Hamouda, Results in Chemistry, 2, 100017 (2020); https://doi.org/10.1016/j.rechem.2019.100017
C.Y. Teh, P.M. Budiman, K.P.Y. Shak and T.Y. Wu, Ind. Eng. Chem. Res., 55, 4363 (2016); https://doi.org/10.1021/acs.iecr.5b04703
S. Venkatesh, K. Venkatesh and A.R. Quaff, J. Appl. Res. Technol., 15, 340 (2017); https://doi.org/10.1016/j.jart.2017.02.006
S.Y. Lee, D. Kang, S. Jeong, H.T. Do and J.H. Kim, ACS Omega, 5, 4233 (2020); https://doi.org/10.1021/acsomega.9b04127
A.K. Badawi, M. Abd Elkodous and G.A.M. Ali, RSC Adv., 11, 36528 (2021); https://doi.org/10.1039/D1RA06892J
Y. Tanimoto and S.I. Noro, RSC Adv., 11, 23707 (2021); https://doi.org/10.1039/D1RA03348D
R.A. El-Ghany Mansour, M.G. Simeda and A.A. Zaatout, RSC Adv., 11, 7851 (2021); https://doi.org/10.1039/D0RA08488C
G.Ö. Kayan and A. Kayan, J. Polym. Environ., 29, 3477 (2021); https://doi.org/10.1007/s10924-021-02154-x
S. Radoor, J. Karayil, A. Jayakumar, D. Nandi, J. Parameswaranpillai, J. Lee, J.M. Shivanna, R. Nithya and S. Siengchin, J. Polym. Environ., 30, 3279 (2022); https://doi.org/10.1007/s10924-022-02421-5
P. Huang, J. Liu, F. Wei, Y. Zhu, X. Wang, C. Cao and W. Song, Mater. Chem. Front., 1, 1550 (2017); https://doi.org/10.1039/C7QM00079K
M. Khorshidi, S. Asadpour, N. Sarmast and M. Dinari, J. Mol. Liq., 348, 118399 (2022); https://doi.org/10.1016/j.molliq.2021.118399
M. Daud, A. Hai, F. Banat, M.B. Wazir, M. Habib, G. Bharath and M.A. Al-Harthi, J. Mol. Liq., 288, 110989 (2019); https://doi.org/10.1016/j.molliq.2019.110989
L. Jafari Foruzin, Z. Rezvani and B. Habibi, Appl. Clay Sci., 188, 105511 (2020); https://doi.org/10.1016/j.clay.2020.105511
G. Rathee, N. Singh and R. Chandra, ACS Omega, 5, 2368 (2020); https://doi.org/10.1021/acsomega.9b03785
T.R.R. Timóteo, C.G. Melo, L.J.A. Danda, L.C.P.B.B. Silva, D.A.F. Fontes, P.C.D. Silva, C.S.B. Aguilera, L.P. Siqueira, L.A. Rolim and P.J. Rolim Neto, Appl. Clay Sci., 180, 105197 (2019); https://doi.org/10.1016/j.clay.2019.105197
D. Bharali and R.C. Deka, J. Environ. Chem. Eng., 5, 2056 (2017); https://doi.org/10.1016/j.jece.2017.04.012
S.S. Ravuru, A. Jana and S. De, J. Hazard. Mater., 373, 791 (2019); https://doi.org/10.1016/j.jhazmat.2019.03.122
M.A. Iqbal, L. Sun and M. Fedel, SN Appl. Sci., 1, 1415 (2019); https://doi.org/10.1007/s42452-019-1474-4
Z. Wang, L. Zhang, P. Fang, L. Wang and W. Wang, ACS Omega, 5, 21805 (2020); https://doi.org/10.1021/acsomega.0c02875
H. Lv, H. Rao, Z. Liu, Z. Zhou, Y. Zhao, H. Wei and Z. Chen, J. Energy Storage, 52B, 104940 (2022); https://doi.org/10.1016/j.est.2022.104940
I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004
H. Freundlich, J. Phys. Chem., 57, 385 (1906).
M.I. Temkin and V. Pyzhev, Acta Physiochimica URSS, 12, 327 (1940).
M.K. Raman and G. Muthuraman, Asian J. Chem., 31, 1255 (2019); https://doi.org/10.14233/ajchem.2019.21772
S. Lagergren, K. Sven. Vetensk. Akad. Handl., 24, 1 (1898).
Y.S. Ho and G. Mckay, Chem. Eng. J., 70, 115 (1998); https://doi.org/10.1016/S0923-0467(98)00076-1
W.J. Weber and J.C. Morris, J. Sanit. Eng. Div., 89, 31 (1963).
J.R. Guarin, J.C. Moreno-Pirajan and L. Giraldo, J. Chem., 2018, 2124845 (2018); https://doi.org/10.1155/2018/2124845
J.M. Jabar, Y.A. Odusote, K.A. Alabi and I.B. Ahmed, Appl. Water Sci., 10, 136 (2020); https://doi.org/10.1007/s13201-020-01221-3
F.C. Wu, R.L. Tseng and R.S. Juang, Chem. Eng. J., 153, 1 (2009); https://doi.org/10.1016/j.cej.2009.04.042
F.C. Wu, R.L. Tseng and R.S. Juang, Chem. Eng. J., 150, 366 (2009); https://doi.org/10.1016/j.cej.2009.01.014
H.T.N. Thi, D.C. Nguyen, T.T. Nguyen, V.T. Tran, H.V. Nguyen, L.G. Bach, D.V.N. Vo, D.H. Nguyen, D.V. Thuan, S.T. Do and T.D. Nguyen, Key Eng. Mater., 814, 463 (2019); https://doi.org/10.4028/www.scientific.net/KEM.814.463
D. Maiti, S. Mukhopadhyay and P.S. Devi, ACS Sustain. Chem. Eng., 5, 11255 (2017); https://doi.org/10.1021/acssuschemeng.7b01684
K.L. Muedi, V. Masindi, J.P. Maree, N. Haneklaus and H.G. Brink, Nanomaterials, 12, 776 (2022); https://doi.org/10.3390/nano12050776
A. Li, H. Deng, C. Ye and Y. Jiang, ACS Omega, 5, 15152 (2020); https://doi.org/10.1021/acsomega.0c01092
B. Priyadarshini, T. Patra and T.R. Sahoo, J. Magnes. Alloys, 9, 478 (2021); https://doi.org/10.1016/j.jma.2020.09.004
R. Lafi, K. Charradi, M.A. Djebbi, A.B. Haj Amara and A. Hafiane, Adv. Powder Technol., 27, 232 (2016); https://doi.org/10.1016/j.apt.2015.12.004
J. Li, H. Yu, X. Zhang, R. Zhu and L. Yan, Front. Environ. Sci. Eng., 14, 52 (2020); https://doi.org/10.1007/s11783-020-1229-x
H.A. Tabti, B. Medjahed, M. Boudinar, A. Kadeche, N. Bouchikhi, A. Ramdani, S. Taleb and M. Adjdir, Res. Chem. Intermed., 48, 2683 (2022); https://doi.org/10.1007/s11164-022-04722-9
S. Chilukoti and T. Thangavel, Inorg. Chem. Commun., 100, 107 (2019); https://doi.org/10.1016/j.inoche.2018.12.027
I.M. Ahmed and M.S. Gasser, Appl. Surf. Sci., 259, 650 (2012); https://doi.org/10.1016/j.apsusc.2012.07.092
T. Taher, R. Putra, N. Rahayu Palapa and A. Lesbani, Chem. Phys. Lett., 777, 138712 (2021); https://doi.org/10.1016/j.cplett.2021.138712
C. Suppaso, N. Pongkan, S. Intachai, M. Ogawa and N. Khaorapapong, Appl. Surf. Sci., 213, 106115 (2021); https://doi.org/10.1016/j.clay.2021.106115
P. Chakraborty and R. Nagarajan, Appl. Surf. Sci., 118, 308 (2015); https://doi.org/10.1016/j.clay.2015.10.011
J. Li, N. Zhang and D.H.L. Ng, J. Mater. Chem. A., 3, 21106 (2015); https://doi.org/10.1039/C5TA04497A