Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Comparison of Performance of Various Homogeneous Alkali Catalysts in Transesterification of Waste Cooking Oil
Corresponding Author(s) : Udara S.P.R. Arachchige
Asian Journal of Chemistry,
Vol. 34 No. 12 (2022): Vol 34 Issue 12, 2022
Abstract
Biodiesel is an excellent substitute for fossil diesel, which received a significant attention in recent decades. Catalyst methods are frequently used to produce biodiesel at low temperatures and pressures. The present work investigates the methanolysis of waste cooking oil with the acid value of 1.86 mg KOH/g employing a variety of homogeneous base catalysts, including KOH, NaOH, CH3OK and CH3ONa. Among the studied catalysts, CH3OK produced the highest biodiesel yield at 99.0%, followed by CH3ONa, KOH and NaOH under the identical reaction conditions. The reaction was carried out for 30 min at 600 ºC and a speed of 600 rpm with a molar ratio of 6:1 for methanol-to-waste cooking oil (WCO) and a 1 wt.% catalyst. However, the viscosity, flash point, density and acid value of the biodiesel all met ASTM criteria, indicating that biodiesel made from KOH, NaOH, CH3OK and CH3ONa is of high quality.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- International Energy Agency, World Energy Outlook (2006); http://www.iea.org/textbase/nppdf/free/2006/weo2006.pdf
- D.M. Rodríguez, J.M. Riesco and D. Malagón-Romero, Chem. Eng. Trans., 57, 679 (2017); https://doi.org/10.3303/CET1757114
- M. Manzanera, M. Molina-Munoz and J. Gonzalez-Lopez, Recent Pat. Biotechnol., 2, 25 (2008); https://doi.org/10.2174/187220808783330929
- M.R. Uddin, K. Ferdous, M.R. Uddin, M. R. Khan and M.A. Islam, Chem. Eng. Sci., 1, 22 (2013); https://doi.org/10.12691/ces-1-2-2
- J. Gerpen, Fuel Process. Technol., 86, 1097 (2005); https://doi.org/10.1016/j.fuproc.2004.11.005
- A. Fadhil, Arab. J. Sci. Eng., 38, 41 (2013); https://doi.org/10.1007/s13369-012-0418-8
- B. Changmai, C. Vanlalveni, A.P. Ingle, R. Bhagat and S.L. Rokhum, RSC Adv., 10, 41625 (2020); https://doi.org/10.1039/D0RA07931F
- A.E. Atabani, A.S. Silitonga, I.A. Badruddin, T.M.I. Mahlia, H.H. Masjuki and S. Mekhilef, Renew. Sustain. Energy Rev., 16, 2070 (2012); https://doi.org/10.1016/j.rser.2012.01.003
- K. Balakrishnan, M.A. Olutoye and B.H. Hameed, Bioresour. Technol., 128, 788 (2013); https://doi.org/10.1016/j.biortech.2012.10.023
- D. Leung and Y. Guo, Fuel Process. Technol., 87, 883 (2006); https://doi.org/10.1016/j.fuproc.2006.06.003
- Y. Sharma and B. Singh, Fuel, 87, 1740 (2008); https://doi.org/10.1016/j.fuel.2007.08.001
- O.O. Oniya, A.O. Adebayo and O. Ogunkunle, Adv. Multidiscipl. Scient. Res. J., 3, 9 (2016).
- E.M. Shahid and Y. Jamal, Renew. Sustain. Energy Rev., 15, 4732 (2011); https://doi.org/10.1016/j.rser.2011.07.079
- V. Mandari and S.K. Devarai, Bioenerg. Res., 15, 935 (2022); https://doi.org/10.1007/s12155-021-10333-w
- J.G. Rocha Jr., A.D.M. Mendonça, D.A.R. de Campos, R.O. Mapele, C.M. Barra, G.F. Bauerfeldta and M. Tubino, J. Braz. Chem. Soc., 30, 342 (2019); https://doi.org/10.21577/0103-5053.20180183
- M.K. Lam, K.T. Lee and A.R. Mohamed, Biotechnol. Adv., 28, 500 (2010); https://doi.org/10.1016/j.biotechadv.2010.03.002
- D. Bacovsky, W. Körbitz, M. Mittelbach and M. Wörgetter, Biodiesel Production: Technologies and European Providers, IEA Task 39 Report T39-B6, pp. 104 (2007).
- L. Meher, D. Vidyasagar and S. Naik, Renew. Sustain. Energy Rev., 10, 248 (2006); https://doi.org/10.1016/j.rser.2004.09.002
- F. Ma and M.A. Hanna, Bioresour. Technol., 70, 1 (1999); https://doi.org/10.1016/S0960-8524(99)00025-5
- J.M. Dias, M.C.M. Alvim-Ferraz and M.F. Almeida, Fuel, 87, 3572 (2008); https://doi.org/10.1016/j.fuel.2008.06.014
- S. Brahma, B. Nath, B. Basumatary, B. Das, P. Saikia, K. Patir and S. Basumatary, Chem. Eng. J. Adv., 10, 100284 (2022); https://doi.org/10.1016/j.ceja.2022.100284
- S. Chozhavendhan, M.V.P. Singh, B. Fransila, R.P. Kumar and G. Karthiga Devi, Curr. Res. Green Sustain. Chem., 1-2, 1 (2020); https://doi.org/10.1016/j.crgsc.2020.04.002
- D. Thilakarathne, U. Arachchige, R. Jayasinghe, N. Weerasekara and K. Miyuranga, Impact of the Quality of Waste Cooking Oil on Biodiesel Production, in ITUM Research Symposium 2021, ITUM, University of Moratuwa, Sri Lanka, pp. 97-100 (2021).
- F.J. Sánchez-Borrego, P. Álvarez-Mateos and J.F. García-Martín, Processes, 9, 797 (2021); https://doi.org/10.3390/pr9050797
- K.A. Viraj Miyuranga, U.S.P.R. Arachchige, D. Thilakarathne, R.A. Jayasinghe and N.A. Weerasekara, Asian J. Chem., 34, 319 (2022); https://doi.org/10.14233/ajchem.2022.23502
- H. Noureddini and D. Zhu, J. Am. Oil Chem. Soc., 74, 1457 (1997); https://doi.org/10.1007/s11746-997-0254-2
- C.C. Enweremadu and M.M. Mbarawa, Renew. Sustain. Energy Rev., 13, 2205 (2009); https://doi.org/10.1016/j.rser.2009.06.007
- U. Schuchardt, R. Sercheli and R.M. Vargas, J. Braz. Chem. Soc., 9, 199 (1998); https://doi.org/10.1590/S0103-50531998000300002
- B. Thangaraj, P.R. Solomon, B. Muniyandi, S. Ranganathan and L. Lin, Clean Energy, 3, 2 (2018); https://doi.org/10.1093/ce/zky020
- K. Komers, R. Stloukal, J. Machek and F. Skopal, Eur. J. Lipid Sci. Technol., 103, 363 (2001); https://doi.org/10.1002/1438-9312(200106)103:6<363::AIDEJLT363>3.0.CO;2-3
- G. Vicente, M. Martínez and J. Aracil, Bioresour. Technol., 92, 297 (2004); https://doi.org/10.1016/j.biortech.2003.08.014
- A. Singh, B. He, J. Thompson and J. Van Gerpen, Appl. Eng. Agric., 22, 597 (2006); https://doi.org/10.13031/2013.21213
References
International Energy Agency, World Energy Outlook (2006); http://www.iea.org/textbase/nppdf/free/2006/weo2006.pdf
D.M. Rodríguez, J.M. Riesco and D. Malagón-Romero, Chem. Eng. Trans., 57, 679 (2017); https://doi.org/10.3303/CET1757114
M. Manzanera, M. Molina-Munoz and J. Gonzalez-Lopez, Recent Pat. Biotechnol., 2, 25 (2008); https://doi.org/10.2174/187220808783330929
M.R. Uddin, K. Ferdous, M.R. Uddin, M. R. Khan and M.A. Islam, Chem. Eng. Sci., 1, 22 (2013); https://doi.org/10.12691/ces-1-2-2
J. Gerpen, Fuel Process. Technol., 86, 1097 (2005); https://doi.org/10.1016/j.fuproc.2004.11.005
A. Fadhil, Arab. J. Sci. Eng., 38, 41 (2013); https://doi.org/10.1007/s13369-012-0418-8
B. Changmai, C. Vanlalveni, A.P. Ingle, R. Bhagat and S.L. Rokhum, RSC Adv., 10, 41625 (2020); https://doi.org/10.1039/D0RA07931F
A.E. Atabani, A.S. Silitonga, I.A. Badruddin, T.M.I. Mahlia, H.H. Masjuki and S. Mekhilef, Renew. Sustain. Energy Rev., 16, 2070 (2012); https://doi.org/10.1016/j.rser.2012.01.003
K. Balakrishnan, M.A. Olutoye and B.H. Hameed, Bioresour. Technol., 128, 788 (2013); https://doi.org/10.1016/j.biortech.2012.10.023
D. Leung and Y. Guo, Fuel Process. Technol., 87, 883 (2006); https://doi.org/10.1016/j.fuproc.2006.06.003
Y. Sharma and B. Singh, Fuel, 87, 1740 (2008); https://doi.org/10.1016/j.fuel.2007.08.001
O.O. Oniya, A.O. Adebayo and O. Ogunkunle, Adv. Multidiscipl. Scient. Res. J., 3, 9 (2016).
E.M. Shahid and Y. Jamal, Renew. Sustain. Energy Rev., 15, 4732 (2011); https://doi.org/10.1016/j.rser.2011.07.079
V. Mandari and S.K. Devarai, Bioenerg. Res., 15, 935 (2022); https://doi.org/10.1007/s12155-021-10333-w
J.G. Rocha Jr., A.D.M. Mendonça, D.A.R. de Campos, R.O. Mapele, C.M. Barra, G.F. Bauerfeldta and M. Tubino, J. Braz. Chem. Soc., 30, 342 (2019); https://doi.org/10.21577/0103-5053.20180183
M.K. Lam, K.T. Lee and A.R. Mohamed, Biotechnol. Adv., 28, 500 (2010); https://doi.org/10.1016/j.biotechadv.2010.03.002
D. Bacovsky, W. Körbitz, M. Mittelbach and M. Wörgetter, Biodiesel Production: Technologies and European Providers, IEA Task 39 Report T39-B6, pp. 104 (2007).
L. Meher, D. Vidyasagar and S. Naik, Renew. Sustain. Energy Rev., 10, 248 (2006); https://doi.org/10.1016/j.rser.2004.09.002
F. Ma and M.A. Hanna, Bioresour. Technol., 70, 1 (1999); https://doi.org/10.1016/S0960-8524(99)00025-5
J.M. Dias, M.C.M. Alvim-Ferraz and M.F. Almeida, Fuel, 87, 3572 (2008); https://doi.org/10.1016/j.fuel.2008.06.014
S. Brahma, B. Nath, B. Basumatary, B. Das, P. Saikia, K. Patir and S. Basumatary, Chem. Eng. J. Adv., 10, 100284 (2022); https://doi.org/10.1016/j.ceja.2022.100284
S. Chozhavendhan, M.V.P. Singh, B. Fransila, R.P. Kumar and G. Karthiga Devi, Curr. Res. Green Sustain. Chem., 1-2, 1 (2020); https://doi.org/10.1016/j.crgsc.2020.04.002
D. Thilakarathne, U. Arachchige, R. Jayasinghe, N. Weerasekara and K. Miyuranga, Impact of the Quality of Waste Cooking Oil on Biodiesel Production, in ITUM Research Symposium 2021, ITUM, University of Moratuwa, Sri Lanka, pp. 97-100 (2021).
F.J. Sánchez-Borrego, P. Álvarez-Mateos and J.F. García-Martín, Processes, 9, 797 (2021); https://doi.org/10.3390/pr9050797
K.A. Viraj Miyuranga, U.S.P.R. Arachchige, D. Thilakarathne, R.A. Jayasinghe and N.A. Weerasekara, Asian J. Chem., 34, 319 (2022); https://doi.org/10.14233/ajchem.2022.23502
H. Noureddini and D. Zhu, J. Am. Oil Chem. Soc., 74, 1457 (1997); https://doi.org/10.1007/s11746-997-0254-2
C.C. Enweremadu and M.M. Mbarawa, Renew. Sustain. Energy Rev., 13, 2205 (2009); https://doi.org/10.1016/j.rser.2009.06.007
U. Schuchardt, R. Sercheli and R.M. Vargas, J. Braz. Chem. Soc., 9, 199 (1998); https://doi.org/10.1590/S0103-50531998000300002
B. Thangaraj, P.R. Solomon, B. Muniyandi, S. Ranganathan and L. Lin, Clean Energy, 3, 2 (2018); https://doi.org/10.1093/ce/zky020
K. Komers, R. Stloukal, J. Machek and F. Skopal, Eur. J. Lipid Sci. Technol., 103, 363 (2001); https://doi.org/10.1002/1438-9312(200106)103:6<363::AIDEJLT363>3.0.CO;2-3
G. Vicente, M. Martínez and J. Aracil, Bioresour. Technol., 92, 297 (2004); https://doi.org/10.1016/j.biortech.2003.08.014
A. Singh, B. He, J. Thompson and J. Van Gerpen, Appl. Eng. Agric., 22, 597 (2006); https://doi.org/10.13031/2013.21213