Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural and Optical Properties of Ni-Cu Doped TiO2 Synthesized by Sol-Gel Method
Corresponding Author(s) : R. Anisha
Asian Journal of Chemistry,
Vol. 34 No. 12 (2022): Vol 34 Issue 12, 2022
Abstract
Ni-Cu doped TiO2 nanoparticles as photocatalyst were synthesized by simple sol-gel method. The effect of Ni and Cu doping on TiO2 and their structural and optical properties were analyzed by XRD, FT-IR, SEM-EDS, TEM and UV-DRS techniques. The XRD patterns of calcined nanoparticles showed a monophasic anatase structure with average diameter around 8 nm, which is in close agreement with the TEM results. The surface morphology of the prepared Ni-Cu doped TiO2 nanoparticles were also analyzed by SEM-EDS technique. From UV-DRS analysis, the band-gap energy value of Ni-Cu doped TiO2 nanoparticles was found to be 2.72 eV. The photocatalytic effect of Ni-Cu doped TiO2 nanoparticles as photocatalyst was studied under visible light irradiation through the degradation of Congo red azo dye. The photocatalytic results revealed that Ni-Cu doped TiO2 showed 99.6% degradation efficiency towards Congo red dye, whereas TOC analysis showed a complete mineralization of Congo red dye with minimum degradated byproducts. These results clearly elucidated that the synthesized photocatalyst is practically effective and is recovered easily, thus minimizing the operating costs. Due to the stability of Ni-Cu doped TiO2 nanoparticles, the prepared photocatalyst exhibit high degrading efficiency even after recycled several times.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Dakiky and I. Nemcova, Dyes Pigments, 44, 181 (2000); https://doi.org/10.1016/S0143-7208(99)00086-8
- M. Vautier, C. Guillard and J.M. Herrmann, J. Catal., 201, 46 (2001); https://doi.org/10.1006/jcat.2001.3232
- X.H. Li, Y. Wu, Y.H. Shen, Y. Sun, Y. Yang and A. Xie, Appl. Surf. Sci., 427, 739 (2018); https://doi.org/10.1016/j.apsusc.2017.08.091
- S. Yaparatne, C.P. Tripp and A. Amirbahman, J. Hazard. Mater., 346, 208 (2018); https://doi.org/10.1016/j.jhazmat.2017.12.029
- S. Kumar, B. Ahmed, A.K. Ojha, J. Das and A. Kumar, Mater. Res. Bull., 90, 224 (2017); https://doi.org/10.1016/j.materresbull.2017.02.044
- C. Yang, J.S. Yu, Q.S. Li and Y.M. Yu, Mater. Res. Bull., 87, 72 (2017); https://doi.org/10.1016/j.materresbull.2016.11.024
- S. Guo, S. Han, H. Mao, S. Dong, C. Wu, L. Jia, B. Chi, J. Pu and J. Li, J. Power Sources, 245, 979 (2014); https://doi.org/10.1016/j.jpowsour.2013.07.044
- S. Guo, T. Zhao, Z. Jin, X. Wan, P. Wang, J. Shang and S. Han, J. Power Sources, 293, 17 (2015); https://doi.org/10.1016/j.jpowsour.2015.05.042
- S.Y. Guo, S. Han, B. Chi, J. Pu and J. Li, ACS Appl. Mater. Interfaces, 6, 4743 (2014); https://doi.org/10.1021/am4054095
- S. Guo, S. Han, H. Mao, C. Wu, L. Jia, B. Chi, J. Pu and L. Jian, J. Alloys Compd., 544, 50 (2012); https://doi.org/10.1016/j.jallcom.2012.07.128
- A.A. Ismail, I. Abdelfattah, M. Faisal and A. Helal, Hazard. Mater, 342, 519 (2018); https://doi.org/10.1016/j.jhazmat.2017.08.046
- L.-N. Liu, J.-G. Dai, T.-J. Zhao, S.-Y. Guo, D.-S. Hou, P. Zhang, J. Shang, S. Wang and S. Han, RSC Adv., 7, 35075 (2017); https://doi.org/10.1039/C7RA04259K
- D. Zhao, G. Sheng, C. Chen and X. Wang, Appl. Catal. B, 111-112, 303 (2012); https://doi.org/10.1016/j.apcatb.2011.10.012
- M.A. Fox and M.T. Dulay, Chem. Rev., 93, 341 (1993); https://doi.org/10.1021/cr00017a016
- M.H. Habibi, A. Hassanzadeh and S. Mahdavi, J. Photochem. Photobiol. Chem., 172, 89 (2005); https://doi.org/10.1016/j.jphotochem.2004.11.009
- S. Chakrabarti and B.K. Dutta, J. Hazard. Mater. B, 112, 269 (2004); https://doi.org/10.1016/j.jhazmat.2004.05.013
- M. Movahedi, A.R. Mahjoub and S. Janitabar-Darzi, J. Iran. Chem. Soc., 6, 570 (2009); https://doi.org/10.1007/BF03246536
- R.K. Wahi, W.W. Yu, Y. Liu, M.L. Mejia, J.C. Falkner, W. Nolte and V.L. Colvin, J. Mol. Catal. A: Chemical, 242, 48 (2005); https://doi.org/10.1016/j.molcata.2005.07.034
- J. Bandara, J.A. Mielczarski and J. Kiwi, Langmuir, 15, 7680 (1999); https://doi.org/10.1021/la990030j
- V. Feng, X. Hu, P.L. Yue, H.Y. Zhu and G.Q. Lu, Ind. Eng. Chem. Res., 42, 2058 (2003); https://doi.org/10.1021/ie0207010
- S. Nam and P.G. Tratnyyek, Water Res., 34, 1837 (2000); https://doi.org/10.1016/S0043-1354(99)00331-0
- M.M. Joshi, N.K. Labhsetwar, P.A. Mangrulkar, S.N. Tijare, S.P. Kamble and S.S. Rayalu, Appl. Catal. A Gen., 357, 26 (2009); https://doi.org/10.1016/j.apcata.2008.12.030
- E.M. Neville, M.J. Mattle, D. Loughrey, B. Rajesh, M. Rahman, J.M.D. MacElroy, J.A. Sullivan and K.R. Thampi, J. Phys. Chem. C, 116, 16511 (2012); https://doi.org/10.1021/jp303645p
- A. Orendorz, A. Brodyanski, J. Losch, L.H. Bai, Z.H. Chen, Y.K. Le, C. Ziegler and H. Gnaser, Surf. Sci., 601, 4390 (2007); https://doi.org/10.1016/j.susc.2007.04.127
- N. Zhao, Y. Yao, J.J. Feng, M.M. Yao and F. Li, Water Air Soil Pollut., 223, 5855 (2012); https://doi.org/10.1007/s11270-012-1321-3
- K. Dedkova, J. Lang, K. Matejova, P. Peikertova, J. Holesinsky, V. Vodarek and J. Kukutschova, J. Photochem. Photobiol. B, 149, 265 (2015); https://doi.org/10.1016/j.jphotobiol.2015.06.018
- B. Peng, X. Meng, F. Tang, X. Ren, D. Chen and J. Ren, J. Phys. Chem. C, 113, 20240 (2009); https://doi.org/10.1021/jp906937e
- T.K. Ghorai, S.K. Biswas and P. Pramanik, Appl. Surf. Sci., 254, 7498 (2008); https://doi.org/10.1016/j.apsusc.2008.06.042
- X. Qlu, M. Miyauchi, K. Sunada, M. Minoshima, M. Liu, Y. Lu, Y. Lu, D. Li, Y. Shimodaira, Y. Hosogi, Y. Kuroda and K. Hashimoto, ACS Nano, 6, 1609 (2012); https://doi.org/10.1021/nn2045888
- T. Ghorai, Open J. Phys. Chem., 1, 28 (2011); https://doi.org/10.4236/ojpc.2011.12005
- T.K. Ghorai, S. Pramanik and P. Pramanik, Appl. Surf. Sci., 255, 9026 (2009); https://doi.org/10.1016/j.apsusc.2009.06.086
- S.T. Kochuveedu, D. Kim and D.H. Kim, J. Phys. Chem. C, 116, 2500 (2012); https://doi.org/10.1021/jp209520m
- H. Zhang, C. Liang, J. Liu, Z. Tian, G. Wang and W. Cai, Langmuir, 28, 3938 (2012); https://doi.org/10.1021/la2043526
- M. Karimipour, J.M. Wikberg, V. Kapaklis, N. Shahtahmasebi, M.R.R. Abad, M. Yeganeh, M.M. Bagheri-Mohagheghi and P. Svedlindh, Phys. Scr., 84, 035702 (2011); https://doi.org/10.1088/0031-8949/84/03/035702
- J. Li, F. Meng, S. Suri, W. Ding, F. Huang and N. Wu, Chem. Commun., 48, 8213 (2012); https://doi.org/10.1039/c2cc30376k
- Z. Zhang, Y. Yu and P. Wang, ACS Appl. Mater. Interfaces, 4, 990 (2012); https://doi.org/10.1021/am201630s
- A. Malankowska, M.P. Kobylanski, A. Mikolajczyk, G. Nowaczyk, O. Cavdar, M. Jarek, W. Lisowski, M. Michalska, E. Kowalska, B. Ohtani and A. Zaleska-Medynska, ACS Sustain. Chem. Eng., 6, 16665 (2018); https://doi.org/10.1021/acssuschemeng.8b03919
- S. Hara, M. Yoshimizu, S. Tanigawa, L. Ni, B. Ohtani and H. Irie, J. Phys. Chem. C, 116, 17458 (2012); https://doi.org/10.1021/jp306315r
- A.L. Luna, E. Novoseltceva, E. Louarn, P. Beaunier, E. Kowalska, B. Ohtani, M.A.Valenzuela, H. Remita and C. Colbeau-Justina, Appl. Catal. B, 191, 18 (2016); https://doi.org/10.1016/j.apcatb.2016.03.008
- M.G. Mendez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, S. Rau, C. Colbeau-Justin, J.L. Rodriguez-Lopez and H. Remita, J. Phys. Chem., 120, 5143 (2016); https://doi.org/10.1021/acs.jpcc.5b10703
- T. Raguram and K.S. Rajni, Appl. Phys., A Mater. Sci. Process., 125, 288 (2019); https://doi.org/10.1007/s00339-019-2581-1
- K.H. Yoon, J.S. Noh, C.H. Kwon and M. Muhammed, Mater. Chem. Phys., 95, 79 (2006); https://doi.org/10.1016/j.matchemphys.2005.06.001
- M. Yan, F. Chen, J. Zhang and M. Anpo, J. Phys. Chem. B, 109, 8673 (2005); https://doi.org/10.1021/jp046087i
- M. Picquart, L. Escobaralarcon, E. Torres, E. Haroponiatowski and T. Lopez, J. Mater. Sci., 37, 3241 (2002); https://doi.org/10.1023/A:1016126832567
- M.M. Momeni, Y. Ghayeb and F. Ezati, J. Colloid Interface Sci., 514, 70 (2018); https://doi.org/10.1016/j.jcis.2017.12.021
- S. Challagulla, K. Tarafder, R. Ganesan and S. Roy, J. Phys. Chem. C, 121, 27406 (2017); https://doi.org/10.1021/acs.jpcc.7b07973
- J. Zhao, Y. Yang, Y. Li, L. Zhao, H. Wang, G. Song and G. Tang, Sol. Energy Mater. Sol. Cells, 168, 62 (2017); https://doi.org/10.1016/j.solmat.2017.04.014
- H. Zhao, Y. Wu, H. Nan, Y. Du, G. Yang, G. Wang, H. Chen, H. Wei and H. Lin, Mater. Res. Express, 6, 085020 (2019); https://doi.org/10.1088/2053-1591/ab1c2a
- Q. Li, R. Liu, T. Wang, K. Xu, Q. Dong, B. Liu, J. Liu and B. Liu, AIP Adv., 5, 097128 (2015); https://doi.org/10.1063/1.4930916
- B. Choudhury, M. Dey and A. Choudhury, Int. Nano Lett., 3, 25 (2013); https://doi.org/10.1186/2228-5326-3-25
References
M. Dakiky and I. Nemcova, Dyes Pigments, 44, 181 (2000); https://doi.org/10.1016/S0143-7208(99)00086-8
M. Vautier, C. Guillard and J.M. Herrmann, J. Catal., 201, 46 (2001); https://doi.org/10.1006/jcat.2001.3232
X.H. Li, Y. Wu, Y.H. Shen, Y. Sun, Y. Yang and A. Xie, Appl. Surf. Sci., 427, 739 (2018); https://doi.org/10.1016/j.apsusc.2017.08.091
S. Yaparatne, C.P. Tripp and A. Amirbahman, J. Hazard. Mater., 346, 208 (2018); https://doi.org/10.1016/j.jhazmat.2017.12.029
S. Kumar, B. Ahmed, A.K. Ojha, J. Das and A. Kumar, Mater. Res. Bull., 90, 224 (2017); https://doi.org/10.1016/j.materresbull.2017.02.044
C. Yang, J.S. Yu, Q.S. Li and Y.M. Yu, Mater. Res. Bull., 87, 72 (2017); https://doi.org/10.1016/j.materresbull.2016.11.024
S. Guo, S. Han, H. Mao, S. Dong, C. Wu, L. Jia, B. Chi, J. Pu and J. Li, J. Power Sources, 245, 979 (2014); https://doi.org/10.1016/j.jpowsour.2013.07.044
S. Guo, T. Zhao, Z. Jin, X. Wan, P. Wang, J. Shang and S. Han, J. Power Sources, 293, 17 (2015); https://doi.org/10.1016/j.jpowsour.2015.05.042
S.Y. Guo, S. Han, B. Chi, J. Pu and J. Li, ACS Appl. Mater. Interfaces, 6, 4743 (2014); https://doi.org/10.1021/am4054095
S. Guo, S. Han, H. Mao, C. Wu, L. Jia, B. Chi, J. Pu and L. Jian, J. Alloys Compd., 544, 50 (2012); https://doi.org/10.1016/j.jallcom.2012.07.128
A.A. Ismail, I. Abdelfattah, M. Faisal and A. Helal, Hazard. Mater, 342, 519 (2018); https://doi.org/10.1016/j.jhazmat.2017.08.046
L.-N. Liu, J.-G. Dai, T.-J. Zhao, S.-Y. Guo, D.-S. Hou, P. Zhang, J. Shang, S. Wang and S. Han, RSC Adv., 7, 35075 (2017); https://doi.org/10.1039/C7RA04259K
D. Zhao, G. Sheng, C. Chen and X. Wang, Appl. Catal. B, 111-112, 303 (2012); https://doi.org/10.1016/j.apcatb.2011.10.012
M.A. Fox and M.T. Dulay, Chem. Rev., 93, 341 (1993); https://doi.org/10.1021/cr00017a016
M.H. Habibi, A. Hassanzadeh and S. Mahdavi, J. Photochem. Photobiol. Chem., 172, 89 (2005); https://doi.org/10.1016/j.jphotochem.2004.11.009
S. Chakrabarti and B.K. Dutta, J. Hazard. Mater. B, 112, 269 (2004); https://doi.org/10.1016/j.jhazmat.2004.05.013
M. Movahedi, A.R. Mahjoub and S. Janitabar-Darzi, J. Iran. Chem. Soc., 6, 570 (2009); https://doi.org/10.1007/BF03246536
R.K. Wahi, W.W. Yu, Y. Liu, M.L. Mejia, J.C. Falkner, W. Nolte and V.L. Colvin, J. Mol. Catal. A: Chemical, 242, 48 (2005); https://doi.org/10.1016/j.molcata.2005.07.034
J. Bandara, J.A. Mielczarski and J. Kiwi, Langmuir, 15, 7680 (1999); https://doi.org/10.1021/la990030j
V. Feng, X. Hu, P.L. Yue, H.Y. Zhu and G.Q. Lu, Ind. Eng. Chem. Res., 42, 2058 (2003); https://doi.org/10.1021/ie0207010
S. Nam and P.G. Tratnyyek, Water Res., 34, 1837 (2000); https://doi.org/10.1016/S0043-1354(99)00331-0
M.M. Joshi, N.K. Labhsetwar, P.A. Mangrulkar, S.N. Tijare, S.P. Kamble and S.S. Rayalu, Appl. Catal. A Gen., 357, 26 (2009); https://doi.org/10.1016/j.apcata.2008.12.030
E.M. Neville, M.J. Mattle, D. Loughrey, B. Rajesh, M. Rahman, J.M.D. MacElroy, J.A. Sullivan and K.R. Thampi, J. Phys. Chem. C, 116, 16511 (2012); https://doi.org/10.1021/jp303645p
A. Orendorz, A. Brodyanski, J. Losch, L.H. Bai, Z.H. Chen, Y.K. Le, C. Ziegler and H. Gnaser, Surf. Sci., 601, 4390 (2007); https://doi.org/10.1016/j.susc.2007.04.127
N. Zhao, Y. Yao, J.J. Feng, M.M. Yao and F. Li, Water Air Soil Pollut., 223, 5855 (2012); https://doi.org/10.1007/s11270-012-1321-3
K. Dedkova, J. Lang, K. Matejova, P. Peikertova, J. Holesinsky, V. Vodarek and J. Kukutschova, J. Photochem. Photobiol. B, 149, 265 (2015); https://doi.org/10.1016/j.jphotobiol.2015.06.018
B. Peng, X. Meng, F. Tang, X. Ren, D. Chen and J. Ren, J. Phys. Chem. C, 113, 20240 (2009); https://doi.org/10.1021/jp906937e
T.K. Ghorai, S.K. Biswas and P. Pramanik, Appl. Surf. Sci., 254, 7498 (2008); https://doi.org/10.1016/j.apsusc.2008.06.042
X. Qlu, M. Miyauchi, K. Sunada, M. Minoshima, M. Liu, Y. Lu, Y. Lu, D. Li, Y. Shimodaira, Y. Hosogi, Y. Kuroda and K. Hashimoto, ACS Nano, 6, 1609 (2012); https://doi.org/10.1021/nn2045888
T. Ghorai, Open J. Phys. Chem., 1, 28 (2011); https://doi.org/10.4236/ojpc.2011.12005
T.K. Ghorai, S. Pramanik and P. Pramanik, Appl. Surf. Sci., 255, 9026 (2009); https://doi.org/10.1016/j.apsusc.2009.06.086
S.T. Kochuveedu, D. Kim and D.H. Kim, J. Phys. Chem. C, 116, 2500 (2012); https://doi.org/10.1021/jp209520m
H. Zhang, C. Liang, J. Liu, Z. Tian, G. Wang and W. Cai, Langmuir, 28, 3938 (2012); https://doi.org/10.1021/la2043526
M. Karimipour, J.M. Wikberg, V. Kapaklis, N. Shahtahmasebi, M.R.R. Abad, M. Yeganeh, M.M. Bagheri-Mohagheghi and P. Svedlindh, Phys. Scr., 84, 035702 (2011); https://doi.org/10.1088/0031-8949/84/03/035702
J. Li, F. Meng, S. Suri, W. Ding, F. Huang and N. Wu, Chem. Commun., 48, 8213 (2012); https://doi.org/10.1039/c2cc30376k
Z. Zhang, Y. Yu and P. Wang, ACS Appl. Mater. Interfaces, 4, 990 (2012); https://doi.org/10.1021/am201630s
A. Malankowska, M.P. Kobylanski, A. Mikolajczyk, G. Nowaczyk, O. Cavdar, M. Jarek, W. Lisowski, M. Michalska, E. Kowalska, B. Ohtani and A. Zaleska-Medynska, ACS Sustain. Chem. Eng., 6, 16665 (2018); https://doi.org/10.1021/acssuschemeng.8b03919
S. Hara, M. Yoshimizu, S. Tanigawa, L. Ni, B. Ohtani and H. Irie, J. Phys. Chem. C, 116, 17458 (2012); https://doi.org/10.1021/jp306315r
A.L. Luna, E. Novoseltceva, E. Louarn, P. Beaunier, E. Kowalska, B. Ohtani, M.A.Valenzuela, H. Remita and C. Colbeau-Justina, Appl. Catal. B, 191, 18 (2016); https://doi.org/10.1016/j.apcatb.2016.03.008
M.G. Mendez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, S. Rau, C. Colbeau-Justin, J.L. Rodriguez-Lopez and H. Remita, J. Phys. Chem., 120, 5143 (2016); https://doi.org/10.1021/acs.jpcc.5b10703
T. Raguram and K.S. Rajni, Appl. Phys., A Mater. Sci. Process., 125, 288 (2019); https://doi.org/10.1007/s00339-019-2581-1
K.H. Yoon, J.S. Noh, C.H. Kwon and M. Muhammed, Mater. Chem. Phys., 95, 79 (2006); https://doi.org/10.1016/j.matchemphys.2005.06.001
M. Yan, F. Chen, J. Zhang and M. Anpo, J. Phys. Chem. B, 109, 8673 (2005); https://doi.org/10.1021/jp046087i
M. Picquart, L. Escobaralarcon, E. Torres, E. Haroponiatowski and T. Lopez, J. Mater. Sci., 37, 3241 (2002); https://doi.org/10.1023/A:1016126832567
M.M. Momeni, Y. Ghayeb and F. Ezati, J. Colloid Interface Sci., 514, 70 (2018); https://doi.org/10.1016/j.jcis.2017.12.021
S. Challagulla, K. Tarafder, R. Ganesan and S. Roy, J. Phys. Chem. C, 121, 27406 (2017); https://doi.org/10.1021/acs.jpcc.7b07973
J. Zhao, Y. Yang, Y. Li, L. Zhao, H. Wang, G. Song and G. Tang, Sol. Energy Mater. Sol. Cells, 168, 62 (2017); https://doi.org/10.1016/j.solmat.2017.04.014
H. Zhao, Y. Wu, H. Nan, Y. Du, G. Yang, G. Wang, H. Chen, H. Wei and H. Lin, Mater. Res. Express, 6, 085020 (2019); https://doi.org/10.1088/2053-1591/ab1c2a
Q. Li, R. Liu, T. Wang, K. Xu, Q. Dong, B. Liu, J. Liu and B. Liu, AIP Adv., 5, 097128 (2015); https://doi.org/10.1063/1.4930916
B. Choudhury, M. Dey and A. Choudhury, Int. Nano Lett., 3, 25 (2013); https://doi.org/10.1186/2228-5326-3-25