Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Facile Green Synthesis of Bromoaniline Molecules: An Experimental and Computational Insight into their Antifungal Behaviour
Corresponding Author(s) : Upasana Bora Sinha
Asian Journal of Chemistry,
Vol. 34 No. 12 (2022): Vol 34 Issue 12, 2022
Abstract
Through the bromination of organic substrates using cetyltrimethylammonium tribromide (CTMATB), a series of bromoanilines have been synthesized using a greener synthetic process. The synthesized bromoanilines were optimized by testing for antifungal activity against Fusarium oxysporum, Penicillium italicum, Candida albicans and Aspergillus niger. The ADMET profiling was studied to determine the drug likeliness of the compounds. In silico studies were done to understand the ligand-protein interaction of the compounds with a target protein. Density functional theory (DFT) studies have been carried out in order to study the reactivity of the compounds through their bandgap energy to supplement and validate the antifungal property of the synthesized compounds.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Ruíz-Baltazar, Int. Res. J. Pure Appl. Chem., 4, 263 (2014); https://doi.org/10.9734/IRJPAC/2014/7595
- M.B. Floyd, M.T. Du, P.F. Fabio, L.A. Jacob and B.D. Johnson, J. Org. Chem., 50, 5022 (1985); https://doi.org/10.1021/jo00225a004
- S. Ghammamy, K. Mehrani, Z. Javanshir, G. Rezaeibéhbahani, H. Afrand, A. Moghimi and Z.S. Aghbolagh, J. Chil. Chem. Soc., 54, (2009); https://doi.org/10.4067/S0717-97072009000400038
- A.K. Singh, V. Singh, S. Rahmani, A.K. Singh and B. Singh, J. Mol. Catal. Chem., 197, 91 (2003); https://doi.org/10.1016/S1381-1169(02)00590-3
- K. Murai, T. Matsushita, A. Nakamura, S. Fukushima, M. Shimura and H. Fujioka, Angew. Chem. Int. Ed., 49, 9174 (2010); https://doi.org/10.1002/anie.201005409
- C. Cook and Y. Chung, Arch. Pharm. Res., 4, 133 (1981); https://doi.org/10.1007/BF02855757
- C. Cook and E. Kang, Arch. Pharm. Res., 4, 137 (1981); https://doi.org/10.1007/BF02855758
- G. Gopalakrishnan, V. Kasinath, N.P. Singh, V.S. Krishnan, K. Solomon and S. Rajan, Molecules, 7, 412 (2002); https://doi.org/10.3390/70500412
- M. Murai, R. Hatano, S. Kitabata and K. Ohe, Chem. Commun., 47, 2375 (2011); https://doi.org/10.1039/C0CC04385K
- D. Urankar, I. Rutar, B. Modec and D. Dolenc, Eur. J. Org. Chem., 2005, 2349 (2005); https://doi.org/10.1002/ejoc.200400829
- J. Fan, Q. Wei, E. Zhu, J. Gao, X. Cheng, Y. Lu and T.P. Loh, Chem. Commun., 57, 5977 (2021); https://doi.org/10.1039/D1CC01721G
- J.-J. Xia, X.-L. Wu and G.-W. Wang, ARKIVOC, 22 (2008); https://doi.org/10.3998/ark.5550190.0009.g03
- S.K. Madhusudan and A.K. Misra, Carbohydr. Res., 340, 497 (2005); https://doi.org/10.1016/j.carres.2004.12.002
- E. Tayama, R. Sato, K. Takedachi, H. Iwamoto and E. Hasegawa, Tetrahedron, 68, 4710 (2012); https://doi.org/10.1016/j.tet.2012.04.015
- E.D. Matveeva, T.A. Podrugina and N.S. Zefirov, Mendeleev Commun., 8, 21 (1998); https://doi.org/10.1070/MC1998v008n01ABEH000729
- J.D. Pelletier and D. Poirier, Tetrahedron Lett., 35, 1051 (1994); https://doi.org/10.1016/S0040-4039(00)79963-1
- M. Gupta and B.P. Wakhloo, ARKIVOC, 94 (2007); https://doi.org/10.3998/ark.5550190.0008.110
- D. Azarifar, B. Maleki and K. Mohammadi, Heterocycles, 71, 683 (2007); https://doi.org/10.3987/COM-06-10961
- R. Liu, C. Dong, X. Liang, X. Wang and X. Hu, J. Org. Chem., 70, 729 (2005); https://doi.org/10.1021/jo048369k
- B. Karimi and H. Hazarkhani, Synthesis, 1239 (2004); https://doi.org/10.1055/s-2004-822348
- V. Kavala, S. Naik and B.K. Patel, J. Org. Chem., 70, 4267 (2005); https://doi.org/10.1021/jo050059u
- H. Wang, K. Wen, N. Nurahmat, Y. Shao, H. Zhang, C. Wei, Y. Li, Y. Shen and Z. Sun, Beilstein J. Org. Chem., 8, 744 (2012); https://doi.org/10.3762/bjoc.8.84
- B. Das, K. Venkateswarlu, A. Majhi, V. Siddaiah and K.R. Reddy, J. Mol. Catal. Chem., 267, 30 (2007); https://doi.org/10.1016/j.molcata.2006.11.002
- Y. Wang, Z. Bai, Z. Wei, S. Xu, X. Li, J. Li, X. Cao and C. Chen, Res. Chem. Intermed., 37, 1029 (2011); https://doi.org/10.1007/s11164-011-0308-9
- P.E. Weller and R.P. Hanzlik, J. Labelled Comp. Radiopharm., 25, 991 (1988); https://doi.org/10.1002/jlcr.2580250911
- X.Y. Zhou, X. Chen and L.G. Wang, Synthesis, 49, 5364 (2017); https://doi.org/10.1055/s-0036-1590895
- M.E. Krolski, A.F. Renaldo, D.E. Rudisill and J.K. Stille, J. Org. Chem., 53, 1170 (1988); https://doi.org/10.1021/jo00241a010
- M.A.V. Ribeiro Da Silva, A.I.M.C.L. Ferreira and J.R.B. Gomes, Bull. Chem. Soc. Jpn., 79, 1852 (2006); https://doi.org/10.1246/bcsj.79.1852
- B.T. Bagmanov, Russ. J. Appl. Chem., 82, 1570 (2009); https://doi.org/10.1134/S1070427209090122
- S.J. Barraza and S.E. Denmark, Synlett, 28, 2891 (2017); https://doi.org/10.1055/s-0036-1590882
- N. DellaCa’, G. Maestri, M. Malacria, E. Derat and M. Catellani, Angew. Chem. Int. Ed., 50, 12257 (2011); https://doi.org/10.1002/anie.201104363
- A. Orellana, A. Nikolaev and N. Nithiy, Synlett, 25, 2301 (2014); https://doi.org/10.1055/s-0034-1378613
- M. Weers, L.H. Lühning, V. Lührs, C. Brahms and S. Doye, Chem. Eur. J., 23, 1237 (2017); https://doi.org/10.1002/chem.201604561
- L. Jimenez and A. Ramanathan, Synthesis, 217 (2010); https://doi.org/10.1055/s-0029-1217112
- N. Longkumer, K. Richa, R. Karmaker, V. Kuotsu, A. Supong, L. Jamir, P. Bharali and U.B. Sinha, Acta Chim. Slov., 66, 276 (2019); https://doi.org/10.17344/acsi.2018.4580
- I. Saikia, A.J. Borah and P. Phukan, Chem. Rev., 116, 6837 (2016); https://doi.org/10.1021/acs.chemrev.5b00400
- U.B. Sinha and L. Jamir, J. Appl. Chem. (Cairo), 3, 1073 (2013).
- E. Mondal, P.R. Sahu, G. Bose and A.T. Khan, Tetrahedron Lett., 43, 2843 (2002); https://doi.org/10.1016/S0040-4039(02)00345-3
- E. Mondal, G. Bose and A.T. Khan, Synlett, 785 (2001); https://doi.org/10.1055/s-2001-14579
- U.B. Sinha, J. Appl. Chem. (Cairo), 1, 137 (2012).
- V. Polshettiwar and R.S. Varma, Fundamentals of Aqueous Microwave Chemistry, In: Aqueous Microwave Assisted Chemistry: Synthesis and Catalysis Synthesis (Green Chemistry Series), Royal Society of Chemistry, Chap. 1 (2010).
- K.S. Patel, J.C. Patel, H.R. Dholariya and K.D. Patel, Spectrochim. Acta A Mol. Biomol. Spectrosc., 96, 468 (2012); https://doi.org/10.1016/j.saa.2012.05.057
- K. Iwasa, D.U. Lee, S.I. Kang and W. Wiegrebe, J. Nat. Prod., 61, 1150 (1998); https://doi.org/10.1021/np980044+
- K. Richa, R. Karmaker, T. Ao, N. Longkumer, B. Singha and U.B. Sinha, Chem. Phys. Lett., 753, 137611 (2020); https://doi.org/10.1016/j.cplett.2020.137611
- B.K. Al-Salami, A.J. Hameed and A.Z. Al-Rubaie, Egypt. J. Chem., 64, 751 (2021); https://doi.org/10.21608/ejchem.2020.43195.2872
- K. Richa, R. Karmaker, N. Longkumer, V. Das, P.J. Bhuyan, M. Pal and U.B. Sinha, Anticancer. Agents Med. Chem., 19, 2211 (2020); https://doi.org/10.2174/1871520619666190930122137
- S.C. Jeyaseelan, A.M.F. Benial and K. Kaviyarasu, J. Mol. Recognit., 34, e2872 (2021); https://doi.org/10.1002/jmr.2872
- M. Chaudhary, N. Kumar, A. Baldi, R. Chandra, M.A. Babu and J. Madan, J. Biomol. Struct. Dyn., 38, 1335 (2020); https://doi.org/10.1080/07391102.2019.1604266
- V.K. Bhovi, Y.D. Bodke, S. Biradar, B.E.K. Swamy and S. Umesh, Phosphorus Sulfur Silicon Rel. Elem., 185, 110 (2009); https://doi.org/10.1080/10426500902717317
- W. Zhao, X. Feng, S. Ban, W. Lin and Q. Li, Bioorg. Med. Chem. Lett., 20, 4132 (2010); https://doi.org/10.1016/j.bmcl.2010.05.068
- Q. Li and C. Kang, Int. J. Mol. Sci., 21, 5262 (2020); https://doi.org/10.3390/ijms21155262
- M. Schäfer, M.L. Semmler, T. Bernhardt, T. Fischer, V. Kakkassery, R. Ramer, M. Hein, S. Bekeschus, P. Langer, B. Hinz, S. Emmert and L. Boeckmann, Cancers, 13, 1770 (2021); https://doi.org/10.3390/cancers13081770
- M. Ohlmeyer and M.M. Zhou, Mt. Sinai J. Med., 77, 350 (2010); https://doi.org/10.1002/msj.20197
- M.A. Sultan, M.S.A. Galil, M. Al-Qubati, M.M. Omar and A. Barakat, Appl. Sci., 10, 7727 (2020); https://doi.org/10.3390/app10217727
- S. Brogi, Molecules, 24, 3061 (2019); https://doi.org/10.3390/molecules24173061
- M.S. Alavijeh, M. Chishty, M.Z. Qaiser and A.M. Palmer, NeuroRx, 2, 554 (2005); https://doi.org/10.1602/neurorx.2.4.554
- D. Sharma, S. Kumar, B. Narasimhan, K. Ramasamy, S.M. Lim, S.A.A. Shah and V. Mani, BMC Chem., 13, 60 (2019); https://doi.org/10.1186/s13065-019-0575-x
- H.E. Selick, A.P. Beresford and M.H. Tarbit, Drug Discov. Today, 7, 109 (2002); https://doi.org/10.1016/S1359-6446(01)02100-6
- M. Anza, M. Endale, L. Cardona, D. Cortes, R. Eswaramoorthy, J. Zueco, H. Rico, M. Trelis and B. Abarca, Adv. Appl. Bioinform. Chem., 14, 117 (2021); https://doi.org/10.2147/AABC.S323657
References
A. Ruíz-Baltazar, Int. Res. J. Pure Appl. Chem., 4, 263 (2014); https://doi.org/10.9734/IRJPAC/2014/7595
M.B. Floyd, M.T. Du, P.F. Fabio, L.A. Jacob and B.D. Johnson, J. Org. Chem., 50, 5022 (1985); https://doi.org/10.1021/jo00225a004
S. Ghammamy, K. Mehrani, Z. Javanshir, G. Rezaeibéhbahani, H. Afrand, A. Moghimi and Z.S. Aghbolagh, J. Chil. Chem. Soc., 54, (2009); https://doi.org/10.4067/S0717-97072009000400038
A.K. Singh, V. Singh, S. Rahmani, A.K. Singh and B. Singh, J. Mol. Catal. Chem., 197, 91 (2003); https://doi.org/10.1016/S1381-1169(02)00590-3
K. Murai, T. Matsushita, A. Nakamura, S. Fukushima, M. Shimura and H. Fujioka, Angew. Chem. Int. Ed., 49, 9174 (2010); https://doi.org/10.1002/anie.201005409
C. Cook and Y. Chung, Arch. Pharm. Res., 4, 133 (1981); https://doi.org/10.1007/BF02855757
C. Cook and E. Kang, Arch. Pharm. Res., 4, 137 (1981); https://doi.org/10.1007/BF02855758
G. Gopalakrishnan, V. Kasinath, N.P. Singh, V.S. Krishnan, K. Solomon and S. Rajan, Molecules, 7, 412 (2002); https://doi.org/10.3390/70500412
M. Murai, R. Hatano, S. Kitabata and K. Ohe, Chem. Commun., 47, 2375 (2011); https://doi.org/10.1039/C0CC04385K
D. Urankar, I. Rutar, B. Modec and D. Dolenc, Eur. J. Org. Chem., 2005, 2349 (2005); https://doi.org/10.1002/ejoc.200400829
J. Fan, Q. Wei, E. Zhu, J. Gao, X. Cheng, Y. Lu and T.P. Loh, Chem. Commun., 57, 5977 (2021); https://doi.org/10.1039/D1CC01721G
J.-J. Xia, X.-L. Wu and G.-W. Wang, ARKIVOC, 22 (2008); https://doi.org/10.3998/ark.5550190.0009.g03
S.K. Madhusudan and A.K. Misra, Carbohydr. Res., 340, 497 (2005); https://doi.org/10.1016/j.carres.2004.12.002
E. Tayama, R. Sato, K. Takedachi, H. Iwamoto and E. Hasegawa, Tetrahedron, 68, 4710 (2012); https://doi.org/10.1016/j.tet.2012.04.015
E.D. Matveeva, T.A. Podrugina and N.S. Zefirov, Mendeleev Commun., 8, 21 (1998); https://doi.org/10.1070/MC1998v008n01ABEH000729
J.D. Pelletier and D. Poirier, Tetrahedron Lett., 35, 1051 (1994); https://doi.org/10.1016/S0040-4039(00)79963-1
M. Gupta and B.P. Wakhloo, ARKIVOC, 94 (2007); https://doi.org/10.3998/ark.5550190.0008.110
D. Azarifar, B. Maleki and K. Mohammadi, Heterocycles, 71, 683 (2007); https://doi.org/10.3987/COM-06-10961
R. Liu, C. Dong, X. Liang, X. Wang and X. Hu, J. Org. Chem., 70, 729 (2005); https://doi.org/10.1021/jo048369k
B. Karimi and H. Hazarkhani, Synthesis, 1239 (2004); https://doi.org/10.1055/s-2004-822348
V. Kavala, S. Naik and B.K. Patel, J. Org. Chem., 70, 4267 (2005); https://doi.org/10.1021/jo050059u
H. Wang, K. Wen, N. Nurahmat, Y. Shao, H. Zhang, C. Wei, Y. Li, Y. Shen and Z. Sun, Beilstein J. Org. Chem., 8, 744 (2012); https://doi.org/10.3762/bjoc.8.84
B. Das, K. Venkateswarlu, A. Majhi, V. Siddaiah and K.R. Reddy, J. Mol. Catal. Chem., 267, 30 (2007); https://doi.org/10.1016/j.molcata.2006.11.002
Y. Wang, Z. Bai, Z. Wei, S. Xu, X. Li, J. Li, X. Cao and C. Chen, Res. Chem. Intermed., 37, 1029 (2011); https://doi.org/10.1007/s11164-011-0308-9
P.E. Weller and R.P. Hanzlik, J. Labelled Comp. Radiopharm., 25, 991 (1988); https://doi.org/10.1002/jlcr.2580250911
X.Y. Zhou, X. Chen and L.G. Wang, Synthesis, 49, 5364 (2017); https://doi.org/10.1055/s-0036-1590895
M.E. Krolski, A.F. Renaldo, D.E. Rudisill and J.K. Stille, J. Org. Chem., 53, 1170 (1988); https://doi.org/10.1021/jo00241a010
M.A.V. Ribeiro Da Silva, A.I.M.C.L. Ferreira and J.R.B. Gomes, Bull. Chem. Soc. Jpn., 79, 1852 (2006); https://doi.org/10.1246/bcsj.79.1852
B.T. Bagmanov, Russ. J. Appl. Chem., 82, 1570 (2009); https://doi.org/10.1134/S1070427209090122
S.J. Barraza and S.E. Denmark, Synlett, 28, 2891 (2017); https://doi.org/10.1055/s-0036-1590882
N. DellaCa’, G. Maestri, M. Malacria, E. Derat and M. Catellani, Angew. Chem. Int. Ed., 50, 12257 (2011); https://doi.org/10.1002/anie.201104363
A. Orellana, A. Nikolaev and N. Nithiy, Synlett, 25, 2301 (2014); https://doi.org/10.1055/s-0034-1378613
M. Weers, L.H. Lühning, V. Lührs, C. Brahms and S. Doye, Chem. Eur. J., 23, 1237 (2017); https://doi.org/10.1002/chem.201604561
L. Jimenez and A. Ramanathan, Synthesis, 217 (2010); https://doi.org/10.1055/s-0029-1217112
N. Longkumer, K. Richa, R. Karmaker, V. Kuotsu, A. Supong, L. Jamir, P. Bharali and U.B. Sinha, Acta Chim. Slov., 66, 276 (2019); https://doi.org/10.17344/acsi.2018.4580
I. Saikia, A.J. Borah and P. Phukan, Chem. Rev., 116, 6837 (2016); https://doi.org/10.1021/acs.chemrev.5b00400
U.B. Sinha and L. Jamir, J. Appl. Chem. (Cairo), 3, 1073 (2013).
E. Mondal, P.R. Sahu, G. Bose and A.T. Khan, Tetrahedron Lett., 43, 2843 (2002); https://doi.org/10.1016/S0040-4039(02)00345-3
E. Mondal, G. Bose and A.T. Khan, Synlett, 785 (2001); https://doi.org/10.1055/s-2001-14579
U.B. Sinha, J. Appl. Chem. (Cairo), 1, 137 (2012).
V. Polshettiwar and R.S. Varma, Fundamentals of Aqueous Microwave Chemistry, In: Aqueous Microwave Assisted Chemistry: Synthesis and Catalysis Synthesis (Green Chemistry Series), Royal Society of Chemistry, Chap. 1 (2010).
K.S. Patel, J.C. Patel, H.R. Dholariya and K.D. Patel, Spectrochim. Acta A Mol. Biomol. Spectrosc., 96, 468 (2012); https://doi.org/10.1016/j.saa.2012.05.057
K. Iwasa, D.U. Lee, S.I. Kang and W. Wiegrebe, J. Nat. Prod., 61, 1150 (1998); https://doi.org/10.1021/np980044+
K. Richa, R. Karmaker, T. Ao, N. Longkumer, B. Singha and U.B. Sinha, Chem. Phys. Lett., 753, 137611 (2020); https://doi.org/10.1016/j.cplett.2020.137611
B.K. Al-Salami, A.J. Hameed and A.Z. Al-Rubaie, Egypt. J. Chem., 64, 751 (2021); https://doi.org/10.21608/ejchem.2020.43195.2872
K. Richa, R. Karmaker, N. Longkumer, V. Das, P.J. Bhuyan, M. Pal and U.B. Sinha, Anticancer. Agents Med. Chem., 19, 2211 (2020); https://doi.org/10.2174/1871520619666190930122137
S.C. Jeyaseelan, A.M.F. Benial and K. Kaviyarasu, J. Mol. Recognit., 34, e2872 (2021); https://doi.org/10.1002/jmr.2872
M. Chaudhary, N. Kumar, A. Baldi, R. Chandra, M.A. Babu and J. Madan, J. Biomol. Struct. Dyn., 38, 1335 (2020); https://doi.org/10.1080/07391102.2019.1604266
V.K. Bhovi, Y.D. Bodke, S. Biradar, B.E.K. Swamy and S. Umesh, Phosphorus Sulfur Silicon Rel. Elem., 185, 110 (2009); https://doi.org/10.1080/10426500902717317
W. Zhao, X. Feng, S. Ban, W. Lin and Q. Li, Bioorg. Med. Chem. Lett., 20, 4132 (2010); https://doi.org/10.1016/j.bmcl.2010.05.068
Q. Li and C. Kang, Int. J. Mol. Sci., 21, 5262 (2020); https://doi.org/10.3390/ijms21155262
M. Schäfer, M.L. Semmler, T. Bernhardt, T. Fischer, V. Kakkassery, R. Ramer, M. Hein, S. Bekeschus, P. Langer, B. Hinz, S. Emmert and L. Boeckmann, Cancers, 13, 1770 (2021); https://doi.org/10.3390/cancers13081770
M. Ohlmeyer and M.M. Zhou, Mt. Sinai J. Med., 77, 350 (2010); https://doi.org/10.1002/msj.20197
M.A. Sultan, M.S.A. Galil, M. Al-Qubati, M.M. Omar and A. Barakat, Appl. Sci., 10, 7727 (2020); https://doi.org/10.3390/app10217727
S. Brogi, Molecules, 24, 3061 (2019); https://doi.org/10.3390/molecules24173061
M.S. Alavijeh, M. Chishty, M.Z. Qaiser and A.M. Palmer, NeuroRx, 2, 554 (2005); https://doi.org/10.1602/neurorx.2.4.554
D. Sharma, S. Kumar, B. Narasimhan, K. Ramasamy, S.M. Lim, S.A.A. Shah and V. Mani, BMC Chem., 13, 60 (2019); https://doi.org/10.1186/s13065-019-0575-x
H.E. Selick, A.P. Beresford and M.H. Tarbit, Drug Discov. Today, 7, 109 (2002); https://doi.org/10.1016/S1359-6446(01)02100-6
M. Anza, M. Endale, L. Cardona, D. Cortes, R. Eswaramoorthy, J. Zueco, H. Rico, M. Trelis and B. Abarca, Adv. Appl. Bioinform. Chem., 14, 117 (2021); https://doi.org/10.2147/AABC.S323657