Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Phosphonium Grounded Ionic Liquid Influenced in Graphene Oxide Enabled to Magnetic Polysulfone (GO/Fe3O4@PSF) for the Elimination of 2,4-Dichlorophenol
Corresponding Author(s) : M.S. Manojkumar
Asian Journal of Chemistry,
Vol. 34 No. 12 (2022): Vol 34 Issue 12, 2022
Abstract
The phase separation technique was used to create magnetic polysulfone facilitated to graphene oxide (GO/Fe3O4@PSF) entrapped with the phosphonium-based ionic liquid which removes the phenolic content from aqueous medium. Scanning electron microscopy, Brunauer-Emmett-Teller, Fourier transform infrared spectroscopy and thermogravimetric analysis were used to characterize the supplement and the immobilization of trihexyltetradecylphosphonium decanoate as ionic liquid in magnetic polysulfone assisted GO was ascertained to be 83.3%. Adsorbent analysis revealed that the established granules have the ability to remove a wide range of phenolic compounds. The strongest expulsion of 2,4-dichlorophenol (2,4-DCP) has been accomplished among pH 2.0 and 11. At 25-70 ºC had no substantial influences on adsorbent, displaying the adsorbent’s suitability for use with genuine effluents. Sorption capacity evidenced that the pathway takes place in second order and the Weber-Morris template constrained the adsorbent limiter as adsorbate molecules. The Redlich-Peterson concept was indeed the great candidate for the experimental evidence, with a significance of 0.82 approaching the Langmuir isotherm model, which also acquired a qmax of 404.50 mg/g. As a method of gathering data, these supplements have the great promise to be used in the treatment of phenolic compound caused environmental contamination.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Akhtar, M.I. Bhanger, S. Iqbal and S.M. Hasany, J. Hazard. Mater., 128, 44 (2006); https://doi.org/10.1016/j.jhazmat.2005.07.025
- P. Antonio, K. Iha and M.E.V. Suárez-Iha, J. Colloid Interface Sci., 307, 24 (2007); https://doi.org/10.1016/j.jcis.2006.11.031
- V. Archana, K.M. Meera S. Begum and N. Anantharaman, Arab. J. Chem., 9, 371 (2016); https://doi.org/10.1016/j.arabjc.2013.03.017
- A. Balasubramanian, S. Venkatesan and T. Nadu, Clean, 42, 64 (2014); https://doi.org/10.1002/clen.201200168
- J.N. Hahladakis, C.A. Velis, R. Weber, E. Iacovidou and P. Purnell, J. Hazard. Mater., 344, 179 (2018); https://doi.org/10.1016/j.jhazmat.2017.10.014
- V. Marturano, P. Cerruti and V. Ambrogi, Phys. Sci. Rev., 2, 20160130 (2017); https://doi.org/10.1515/psr-2016-0130
- C. Campanale, C. Massarelli, I. Savino, V. Locaputo and V.F. Uricchio, Int. J. Environ. Res. Public Health, 17, 1212 (2020); https://doi.org/10.3390/ijerph17041212
- K.A.M. Said, A.F. Ismail, Z.A. Karim, M.S. Abdullah and A. Hafeez, Process Saf. Environ. Prot.., 151, 257 (2021); https://doi.org/10.1016/j.psep.2021.05.015
- J. Fan, Y. Fan, Y. Pei, K. Wu, J. Wang and M. Fan, Sep. Purif. Technol., 61, 324 (2008); https://doi.org/10.1016/j.seppur.2007.11.005
- E.O. Ezugbe and S. Rathilal, Membranes, 10, 89 (2020); https://doi.org/10.3390/membranes10050089
- W. Choi, I. Lahiri, R. Seelaboyina and Y.S. Kang, Crit. Rev. Solid State Mater. Sci., 35, 52 (2010); https://doi.org/10.1080/10408430903505036
- H. Ahmad, Mi. Fana and D. Hui, Compos. B: Eng., 145, 270 (2018); https://doi.org/10.1016/j.compositesb.2018.02.006
- X. Fan, G. Jiao, W. Zhao, P. Jin and X. Li, Nanoscale, 5, 1143 (2013); https://doi.org/10.1039/C2NR33158F
- S. Chong, G. Zhang, H. Tian and H. Zhao, J. Environ. Sci., 44, 148 (2016); https://doi.org/10.1016/j.jes.2015.11.022
- N. Venkatesha, P. Poojar, Y. Qurishi, S. Geethanath and C. Srivastava, J. Appl. Phys., 117, 154702 (2015); https://doi.org/10.1063/1.4918605
- N.D. Koromilas,C. Anastasopoulos, E.K. Oikonomou and J.K. Kallitsis, Polymers, 11, 59 (2019); https://doi.org/10.3390/polym11010059
- H.T.V. Nguyen, Th.H.A. Ngo, K.D. Do, M.N. Nguyen, N.T.T. Dang, T.T.H. Nguyen, V. Vien and T.A. Vu, Adv. Nanomater. Green Growth, 2019, 3164373 (2019); https://doi.org/10.1155/2019/3164373
- C. Panisello, B. Peña, T. Gumí and R. Garcia-Valls, J. Appl. Polym. Sci., 129, 1625 (2013); https://doi.org/10.1002/app.38868
- Z. Li, M. Wu, Z. Jiao, B. Bao and S. Lu, J. Hazard. Mater., 114, 111 (2004); https://doi.org/10.1016/j.jhazmat.2004.07.014
- C. Panisello and R. Garcia-Valls, Procedia Eng., 44, 1305 (2012); https://doi.org/10.1016/j.proeng.2012.08.764
- K. Singh, S. Devi, H.C. Bajaj, P. Ingole, J. Choudhari and H. Bhrambhatt, Sep. Sci. Technol., 49, 2630 (2013); https://doi.org/10.1080/01496395.2014.911023
- E. Bilgin Simsek, I. Novak, O. Sausa and D. Berek, Res. Chem. Intermed., 43, 503 (2017); https://doi.org/10.1007/s11164-016-2637-1
- B. Xie, J. Qin, S. Wang, X. Li, H. Sun and W. Chen, Int. J. Environ. Res. Public Health, 17, 789 (2020); https://doi.org/10.3390/ijerph17030789
References
M. Akhtar, M.I. Bhanger, S. Iqbal and S.M. Hasany, J. Hazard. Mater., 128, 44 (2006); https://doi.org/10.1016/j.jhazmat.2005.07.025
P. Antonio, K. Iha and M.E.V. Suárez-Iha, J. Colloid Interface Sci., 307, 24 (2007); https://doi.org/10.1016/j.jcis.2006.11.031
V. Archana, K.M. Meera S. Begum and N. Anantharaman, Arab. J. Chem., 9, 371 (2016); https://doi.org/10.1016/j.arabjc.2013.03.017
A. Balasubramanian, S. Venkatesan and T. Nadu, Clean, 42, 64 (2014); https://doi.org/10.1002/clen.201200168
J.N. Hahladakis, C.A. Velis, R. Weber, E. Iacovidou and P. Purnell, J. Hazard. Mater., 344, 179 (2018); https://doi.org/10.1016/j.jhazmat.2017.10.014
V. Marturano, P. Cerruti and V. Ambrogi, Phys. Sci. Rev., 2, 20160130 (2017); https://doi.org/10.1515/psr-2016-0130
C. Campanale, C. Massarelli, I. Savino, V. Locaputo and V.F. Uricchio, Int. J. Environ. Res. Public Health, 17, 1212 (2020); https://doi.org/10.3390/ijerph17041212
K.A.M. Said, A.F. Ismail, Z.A. Karim, M.S. Abdullah and A. Hafeez, Process Saf. Environ. Prot.., 151, 257 (2021); https://doi.org/10.1016/j.psep.2021.05.015
J. Fan, Y. Fan, Y. Pei, K. Wu, J. Wang and M. Fan, Sep. Purif. Technol., 61, 324 (2008); https://doi.org/10.1016/j.seppur.2007.11.005
E.O. Ezugbe and S. Rathilal, Membranes, 10, 89 (2020); https://doi.org/10.3390/membranes10050089
W. Choi, I. Lahiri, R. Seelaboyina and Y.S. Kang, Crit. Rev. Solid State Mater. Sci., 35, 52 (2010); https://doi.org/10.1080/10408430903505036
H. Ahmad, Mi. Fana and D. Hui, Compos. B: Eng., 145, 270 (2018); https://doi.org/10.1016/j.compositesb.2018.02.006
X. Fan, G. Jiao, W. Zhao, P. Jin and X. Li, Nanoscale, 5, 1143 (2013); https://doi.org/10.1039/C2NR33158F
S. Chong, G. Zhang, H. Tian and H. Zhao, J. Environ. Sci., 44, 148 (2016); https://doi.org/10.1016/j.jes.2015.11.022
N. Venkatesha, P. Poojar, Y. Qurishi, S. Geethanath and C. Srivastava, J. Appl. Phys., 117, 154702 (2015); https://doi.org/10.1063/1.4918605
N.D. Koromilas,C. Anastasopoulos, E.K. Oikonomou and J.K. Kallitsis, Polymers, 11, 59 (2019); https://doi.org/10.3390/polym11010059
H.T.V. Nguyen, Th.H.A. Ngo, K.D. Do, M.N. Nguyen, N.T.T. Dang, T.T.H. Nguyen, V. Vien and T.A. Vu, Adv. Nanomater. Green Growth, 2019, 3164373 (2019); https://doi.org/10.1155/2019/3164373
C. Panisello, B. Peña, T. Gumí and R. Garcia-Valls, J. Appl. Polym. Sci., 129, 1625 (2013); https://doi.org/10.1002/app.38868
Z. Li, M. Wu, Z. Jiao, B. Bao and S. Lu, J. Hazard. Mater., 114, 111 (2004); https://doi.org/10.1016/j.jhazmat.2004.07.014
C. Panisello and R. Garcia-Valls, Procedia Eng., 44, 1305 (2012); https://doi.org/10.1016/j.proeng.2012.08.764
K. Singh, S. Devi, H.C. Bajaj, P. Ingole, J. Choudhari and H. Bhrambhatt, Sep. Sci. Technol., 49, 2630 (2013); https://doi.org/10.1080/01496395.2014.911023
E. Bilgin Simsek, I. Novak, O. Sausa and D. Berek, Res. Chem. Intermed., 43, 503 (2017); https://doi.org/10.1007/s11164-016-2637-1
B. Xie, J. Qin, S. Wang, X. Li, H. Sun and W. Chen, Int. J. Environ. Res. Public Health, 17, 789 (2020); https://doi.org/10.3390/ijerph17030789